skip to main content


Search for: All records

Creators/Authors contains: "Head-Gordon, Teresa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. We report a new deep learning message passing network that takes inspiration from Newton's equations of motion to learn interatomic potentials and forces. With the advantage of directional information from trainable force vectors, and physics-infused operators that are inspired by Newtonian physics, the entire model remains rotationally equivariant, and many-body interactions are inferred by more interpretable physical features. We test NewtonNet on the prediction of several reactive and non-reactive high quality ab initio data sets including single small molecules, a large set of chemically diverse molecules, and methane and hydrogen combustion reactions, achieving state-of-the-art test performance on energies and forces with far greater data and computational efficiency than other deep learning models. 
    more » « less
  3. Abstract

    The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations withab initioMD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional,ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)