skip to main content


Search for: All records

Creators/Authors contains: "Hearty, Fred"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.800.15+0.17g cm−3) with a planetary radius of 9.7 ± 0.5R(0.87 ± 0.04RJup) and a planetary mass of13518+17M(0.420.06+0.05MJup). It has an orbital period of3.7926220.000010+0.000010days and an orbital eccentricity of0.060.04+0.07. We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.

     
    more » « less
  3. Abstract We report the characterization of 28 low-mass (0.02 M ⊙ ≤ M 2 ≤ 0.25 M ⊙ ) companions to Kepler objects of interest (KOIs), eight of which were previously designated confirmed planets. These objects were detected as transiting companions to Sunlike stars (G and F dwarfs) by the Kepler mission and are confirmed as single-lined spectroscopic binaries in the current work using the northern multiplexed Apache Point Observatory Galactic Evolution Experiment near-infrared spectrograph (APOGEE-N) as part of the third and fourth Sloan Digital Sky Surveys. We have observed hundreds of KOIs using APOGEE-N and collected a total of 43,175 spectra with a median of 19 visits and a median baseline of ∼1.9 yr per target. We jointly model the Kepler photometry and APOGEE-N radial velocities to derive fundamental parameters for this subset of 28 transiting companions. The radii for most of these low-mass companions are overinflated (by ∼10%) when compared to theoretical models. Tidally locked M dwarfs on short-period orbits show the largest amount of inflation, but inflation is also evident for companions that are well separated from the host star. We demonstrate that APOGEE-N data provide reliable radial velocities when compared to precise high-resolution spectrographs that enable detailed characterization of individual systems and the inference of orbital elements for faint ( H > 12) KOIs. The data from the entire APOGEE-KOI program are public and present an opportunity to characterize an extensive subset of the binary population observed by Kepler. 
    more » « less
    Free, publicly-accessible full text available April 1, 2024
  4. Abstract

    The Transiting Exoplanet Survey Satellite (TESS) mission detected a companion orbiting TIC 71268730, categorized it as a planet candidate, and designated the system TOI-5375. Our follow-up analysis using radial-velocity data from the Habitable-zone Planet Finder, photometric data from Red Buttes Observatory, and speckle imaging with NN-EXPLORE Exoplanet Stellar Speckle Imager determined that the companion is a very low mass star near the hydrogen-burning mass limit with a mass of 0.080 ± 0.002M(83.81 ± 2.10MJ), a radius of0.11140.0050+0.0048R(1.08410.04870.0467RJ), and brightness temperature of 2600 ± 70 K. This object orbits with a period of 1.721553 ± 0.000001 days around an early M dwarf star (0.62 ± 0.016M). TESS photometry shows regular variations in the host star’s TESS light curve, which we interpreted as an activity-induced variation of ∼2%, and used this variability to measure the host star’s stellar rotation period of1.97160.0083+0.0080days. The TOI-5375 system provides tight constraints on stellar models of low-mass stars at the hydrogen-burning limit and adds to the population in this important region.

     
    more » « less
  5. Abstract We report the discovery of an M = 67 ± 2 M J brown dwarf transiting the early M dwarf TOI-2119 on an eccentric orbit ( e = 0.3362 ± 0.0005) at an orbital period of 7.200861 ± 0.000005 days. We confirm the brown dwarf nature of the transiting companion using a combination of ground-based and space-based photometry and high-precision velocimetry from the Habitable-zone Planet Finder. Detection of the secondary eclipse with TESS photometry enables a precise determination of the eccentricity and reveals the brown dwarf has a brightness temperature of 2100 ± 80 K, a value which is consistent with an early L dwarf. TOI-2119 is one of the most eccentric known brown dwarfs with P < 10 days, possibly due to the long circularization timescales for an object orbiting an M dwarf. We assess the prospects for determining the obliquity of the host star to probe formation scenarios and the possibility of additional companions in the system using Gaia EDR3 and our radial velocities. 
    more » « less
  6. Abstract The Gaia Alert System issued an alert on 2020 August 28, on Gaia 20eae when its light curve showed a ∼4.25 magnitude outburst. We present multiwavelength photometric and spectroscopic follow-up observations of this source since 2020 August and identify it as the newest member of the FUor/EXor family of sources. We find that the present brightening of Gaia 20eae is not due to the dust-clearing event but due to an intrinsic change in the spectral energy distribution. The light curve of Gaia 20eae shows a transition stage during which most of its brightness (∼3.4 mag) has occurred on a short timescale of 34 days with a rise rate of 3 mag/month. Gaia 20eae has now started to decay at a rate of 0.3 mag/month. We have detected a strong P Cygni profile in H α , which indicates the presence of winds originating from regions close to the accretion. We find signatures of very strong and turbulent outflow and accretion in Gaia 20eae during this outburst phase. We have also detected a redshifted absorption component in all of the Ca ii IR triplet lines consistent with a signature of hot infalling gas in the magnetospheric accretion funnel. This enables us to constrain the viewing angle with respect to the accretion funnel. Our investigation of Gaia 20eae points toward magnetospheric accretion being the phenomenon for the current outburst. 
    more » « less
  7. null (Ed.)
  8. Abstract We present the discovery of a new Jovian-sized planet, TOI-3757 b, the lowest-density transiting planet known to orbit an M dwarf (M0V). This planet was discovered around a solar-metallicity M dwarf, using Transiting Exoplanet Survey Satellite photometry and confirmed with precise radial velocities from the Habitable-zone Planet Finder (HPF) and NEID. With a planetary radius of 12.0 − 0.5 + 0.4 R ⊕ and mass of 85.3 − 8.7 + 8.8 M ⊕ , not only does this object add to the small sample of gas giants (∼10) around M dwarfs, but also its low density ( ρ = 0.27 − 0.04 + 0.05 g cm −3 ) provides an opportunity to test theories of planet formation. We present two hypotheses to explain its low density; first, we posit that the low metallicity of its stellar host (∼0.3 dex lower than the median metallicity of M dwarfs hosting gas giants) could have played a role in the delayed formation of a solid core massive enough to initiate runaway accretion. Second, using the eccentricity estimate of 0.14 ± 0.06, we determine it is also plausible for tidal heating to at least partially be responsible for inflating the radius of TOI-3757b b. The low density and large scale height of TOI-3757 b makes it an excellent target for transmission spectroscopy studies of atmospheric escape and composition (transmission spectroscopy measurement of ∼ 190). We use HPF to perform transmission spectroscopy of TOI-3757 b using the helium 10830 Å line. Doing this, we place an upper limit of 6.9% (with 90% confidence) on the maximum depth of the absorption from the metastable transition of He at ∼10830 Å, which can help constraint the atmospheric mass-loss rate in this energy-limited regime. 
    more » « less
  9. Abstract We validate the planetary nature of an ultra-short-period planet orbiting the M dwarf KOI-4777. We use a combination of space-based photometry from Kepler, high-precision, near-infrared Doppler spectroscopy from the Habitable-zone Planet Finder, and adaptive optics imaging to characterize this system. KOI-4777.01 is a Mars-sized exoplanet ( R p = 0.51 ± 0.03 R ⊕ ) orbiting the host star every 0.412 days (∼9.9 hr). This is the smallest validated ultra-short period planet known and we see no evidence for additional massive companions using our HPF RVs. We constrain the upper 3 σ mass to M p < 0.34 M ⊕ by assuming the planet is less dense than iron. Obtaining a mass measurement for KOI-4777.01 is beyond current instrumental capabilities. 
    more » « less