skip to main content


Search for: All records

Creators/Authors contains: "Hedges, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    InAs quantum dots (QDs) embedded into a waveguiding GaAs semiconductor matrix may produce scintillation detectors with exceptional speed and yield, making them valuable for nuclear security, medical imaging, and high energy physics applications. In this work, we developed thick (~25um) epitaxial heterostructres with high luminescence efficiency composed of self-assembled nano-engineered InAs QDs grown by molecular beam epitaxy. The bulk GaAs acts as a stopping material for incident particles and as a waveguide when layer-transferred onto a low-index substrate. Waveguiding and self-absorption (<1cm-1) were studied using photoluminescence with scanning laser excitation and modeled with ray optics approximation and geometrical coupling of high-index waveguide to a collection fiber. Scintillating signals from alpha-particles were analyzed with an external photodiode (PD) and an integrated PD which provided an improved optical coupling. The mean charge collected by the integrated PD corresponded to 5×1e4 photoelectrons per 1 MeV of deposited energy, or ~20% of the theoretically achievable light yield. Combined with the previously measured QD scintillation time of 0.3-0.6 ns, this makes the InAs/GaAs QD heterostructures the fastest high yield scintillation material reported. 
    more » « less
  2. A bstract Charged-lepton-flavor-violation is predicted in several new physics scenarios. We update the analysis of τ lepton decays into a light charged lepton ( ℓ = e ± or μ ± ) and a vector meson ( V 0 = ρ 0 , ϕ , ω , K *0 , or $$ \overline{K} $$ K ¯ *0 ) using 980 fb − 1 of data collected with the Belle detector at the KEKB collider. No significant excess of such signal events is observed, and thus 90% credibility level upper limits are set on the τ → ℓV 0 branching fractions in the range of (1.7–4 . 3) × 10 − 8 . These limits are improved by 30% on average from the previous results. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024