skip to main content


Search for: All records

Creators/Authors contains: "Hemmerling, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    The materials that are receiving the most attention in photoelectrochemical water splitting are metallic nanoparticle electrocatalysts (np‐EC) attached to the surface of a semiconductor (SC) light absorber. In these multicomponent systems, the interface between the semiconductor and electrocatalysts critically affects performance. However, the np‐EC/SC interface remains poorly understood as it is complex on atomic scales, dynamic under reaction conditions, and inaccessible to direct experimental probes. This contribution sheds light on how the electrocatalyst/semiconductor interface evolves under reaction conditions by investigating the behavior of nickel electrocatalysts (as nanoparticles and films) deposited on silicon semiconductors. Rigorous electrochemical experiments, interfacial atomistic characterization, and computational modeling are combined to demonstrate critical links between the atomistic features of the interface and the overall performance. It is shown that electrolyte‐induced atomistic changes to the interface lead to (1) modulation of the charge carrier fluxes and a dramatic decrease in the electron/hole recombination rates and (2) a change in the barrier height of the interface. Furthermore, the critical roles of nonidealities and electrocatalyst coverage due to interfacial geometry are explored. Each of these factors must be considered to optimize the design of metal/semiconductor interfaces which are broadly applicable to photoelectrocatalysis and photovoltaic research.

     
    more » « less
  3. Abstract

    Metal–insulator–semiconductor (MIS) photo‐electrocatalysts offer a pathway to stable and efficient solar water splitting. Initially motivated as a strategy to protect the underlying semiconductor photoabsorber from harsh operating conditions, the thickness of the insulator layer in MIS systems has recently been shown to be a critical design parameter which can be tuned to optimize the photovoltage. This study analyzes the underlying mechanism by which the thickness of the insulator layer impacts the performance of MIS photo‐electrocatalysts. A concrete example of an Ir/HfO2/n‐Si MIS system is investigated for the oxygen evolution reaction. The results of combined experiments and modeling suggest that the insulator thickness affects the photovoltage i) favorably by controlling the flux of charge carriers from the semiconductor to the metal electrocatalyst and ii) adversely by introducing nonidealities such as surface defect states which limit the generated photovoltage. It is important to quantify these different mechanisms and suggest avenues for addressing these nonidealities to enable the rational design of MIS systems that can approach the fundamental photovoltage limits. The analysis described in this contribution as well as the strategy toward optimizing the photovoltage are generalizable to other MIS systems.

     
    more » « less