skip to main content


Search for: All records

Creators/Authors contains: "Henze, Christopher E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the Distant Giants Survey, a three-year radial velocity campaign to measure P(DG∣CS), the conditional occurrence of distant giant planets (DG;Mp∼ 0.3–13MJ,P> 1 yr) in systems hosting a close-in small planet (CS;Rp< 10R). For the past two years, we have monitored 47 Sun-like stars hosting small transiting planets detected by TESS. We present the selection criteria used to assemble our sample and report the discovery of two distant giant planets, TOI-1669 b and TOI-1694 c. For TOI-1669 b we find thatMsini=0.573±0.074MJ,P= 502 ± 16 days, ande< 0.27, while for TOI-1694 c,Msini=1.05±0.05MJ,P= 389.2 ± 3.9 days, ande= 0.18 ± 0.05. We also confirmed the 3.8 days transiting planet TOI-1694 b by measuring a true mass ofM= 26.1 ± 2.2M. At the end of the Distant Giants Survey, we will incorporate TOI-1669 b and TOI-1694 c into our calculation of P(DG∣CS), a crucial statistic for understanding the relationship between outer giants and small inner companions.

     
    more » « less
  2. ABSTRACT

    We present the discovery of TOI-2136 b, a sub-Neptune planet transiting a nearby M4.5V-type star every 7.85 d, identified through photometric measurements from the Transiting Exoplanet Survey Satellite (TESS) mission. The host star is located 33 pc away with a radius of R* = 0.34 ± 0.02 R⊙, a mass of $0.34\pm 0.02 \, \mathrm{M}_{\odot }$, and an effective temperature of 3342 ± 100 K. We estimate its stellar rotation period to be 75 ± 5 d based on archival long-term photometry. We confirm and characterize the planet based on a series of ground-based multiwavelength photometry, high-angular-resolution imaging observations, and precise radial velocities from Canada–France–Hawaii Telescope (CFHT)/SpectroPolarimètre InfraROUge (SPIRou). Our joint analysis reveals that the planet has a radius of 2.20 ± 0.17 R⊕ and a mass of 6.4 ± 2.4 M⊕. The mass and radius of TOI-2136 b are consistent with a broad range of compositions, from water-ice to gas-dominated worlds. TOI-2136 b falls close to the radius valley for M dwarfs predicted by thermally driven atmospheric mass-loss models, making it an interesting target for future studies of its interior structure and atmospheric properties.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η ⊕ as the HZ occurrence of planets with radii between 0.5 and 1.5 R ⊕ orbiting stars with effective temperatures between 4800 and 6300 K. We find that η ⊕ for the conservative HZ is between (errors reflect 68% credible intervals) and planets per star, while the optimistic HZ occurrence is between and planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on average, the nearest HZ planet around G and K dwarfs is ∼6 pc away and there are ∼4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun. 
    more » « less
  8. null (Ed.)