skip to main content


Search for: All records

Creators/Authors contains: "Heywood, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cyclical models are often used to describe how students learn and develop. These models usually focus on the cognitive domain and describe how knowledge and skills are learned within a course or classroom. By providing insights into how students learn and thus how an instructor can support learning, these models and the schemas drawn from them also influence beliefs about learning and thus how educational programs are designed and developed. In this paper the authors present an alternative cyclical model of learning that is drawn from a philosophy of enactivism rather than rational dualism. In comparison with the dualism inherent in viewpoints derived from Descartes where learners construct internal mental representation from inputs received from the external world, in enactivism development occurs through continual dynamic interactions between an agent and their environment. Enactivism thus emphasizes the role environments play in learning and development. The model developed in this paper hypothesizes that the environment in which learning typically occurs can be represented by three elements: the learner’s identity and culture which informs personally significant goals and values; the affordances a degree program offers in areas of knowledge, identity, and context which informs the capabilities of the environment; and the implicit and explicit goals of education as they are negotiated and understood by learners and teachers. These three elements are strongly coupled and together define the ever-changing learning environment. The paper explores how changing technologies and cultures affect each of these three elements in regards to students’ ability to become technologically literate. While rational or dualist views of education see such environmental changes as peripheral to developing accurate representations of truth, enactivism posits that environment significantly affects the process of education. Because each student or faculty member is a participant in a learning organization changes within the organization—whether externally or internally driven—change the learning process. If education is deemed successful when students can transfer learning to new contexts, dualist models assume transfer is weakly coupled to educational environments while the enactivist viewpoint posits that environments strongly affect transfer. The enactivist model can inform efforts to encourage technological literacy. Like many areas in STEM, education technological literacy has sought to identify and support learning outcomes that specify effective teaching or content interventions which enable learners to become more technologically literate. From the enactivist perspective, however, technological literacy is achieved by placing individuals into an environment in which they must navigate technology-induced challenges, with success defined as learning processes that allow learners to manage tensions inherent in their environment. Because most students already live in such environments teaching definable or enumerable outcomes makes less sense than helping student to be metacognitive and reflective how they manage and relate with technology. 
    more » « less
  2. null (Ed.)
    In summarizing the state of engineering education in the United States the 1918 Mann Report articulated a vision for engineering as “harmonizing the conflicting demands of technical skill and liberal education” and the engineer “not as a conglomeration of classical scholarship and mechanical skill, but as the creator of machines and the interpreter of their human significance, well qualified to increase the material rewards of human labor and to organize industry for the more intelligent development of men.” While later reports shifted the direction of degree programs, elements of the vision articulated in the Mann report remain defining characteristics of an engineering education. The focus on industry emphasizes current, contingent, and contextualized knowledge while synthesis of technical, organizational, and liberal forms of knowing and doing remains a strong theme in engineering education. Engineering, however, is not the only discipline to address such issues. Management, teaching, and medicine also educate people for practice and must continually engage with a changing world to remain relevant. In this paper it is hypothesized that degree programs in these disciplines confront, with varying degrees of success, a tension between providing the knowledge needed to act and inculcating the ability in students to act spontaneously and in the right way. This paper explores this tension by looking across these disciplines to identify practices that are believed to be effective in giving students the knowledge and abilities needed to act professionally. The general approach that has emerged is having students actively address problems of varying degrees of difficulty and constraint through techniques such a problem-based learning. The broad use of problem-centered techniques in disciplines which deal with “the world as it exists now” is to develop a difficult-to-describe characteristic in students – a pervasive mode of being that allows graduates to address challenges and adapt themselves to new situations as need arises. Because this goal is difficult to articulate or measure, it is often described through analogies such as “T-shaped” engineers or the development of professional or transferable skills. Here it is proposed that this objective is achieved by synthesizing diverse lived experiences, a process which is aided by developing forms of transfer that allows experiences developed in one context to be drawn upon effectively in another. Such experiential transfer is likely different than knowledge transfer across disciplinary domains and may be enhanced by supporting the development of goal-based concepts. Furthermore, although this characteristic is often decomposed into discrete educational outcomes such as teamwork or communication, defining and assessing outcomes necessarily emphasizes skill within a domain rather than synthesis across domains. Thus outcomes-based assessment may be counter-productive to developing sought after characteristics of graduates. 
    more » « less
  3. oday’s engineering students face a very different world than their predecessors. As engineering has adapted to a more global and interconnected economy, the issues that face today’s engineers have become more complex. In a highly networked world notions of the impact of an engineer’s actions on others, the basis for moral and ethical behavior, also become more complex. The definition of complex here captures higher-order and emergent behaviors, situations that can change rapidly, limitations to predictability, and behavior arising from interactions rather than innate to components. While ethics has remained central to engineering education and in general has retained its deontological basis, the ideas the serve as the basis for engineering ethics have changed over time and can be expected to change in the future. The fact that the future ethical challenges that engineering students will face will be distributed and complex while most engineering curricula focus on simplified systems and decisions indicates emerging challenges for effectively addressing engineering ethics within the curriculum. Frameworks that distinguish simple and complicated from complex systems—in which outcomes are more uncertain—emphasize that action becomes more important than knowledge. In other words, it is more important to do what is right, even if one’s actions are imperfect, than know what is right to do. This paper explores the intersection of engineering curricula and engineering ethics from the perspective of “right action”, that is being able in act in ways that lead to ethical outcomes. It is argued that by focusing predominately on knowledge and situating learning in academic settings engineering curricula miss opportunities for developing capabilities for action. Through this lens the opportunities to address engineering ethics in the curriculum are seen to lie predominately outside traditional coursework. 
    more » « less