skip to main content


Search for: All records

Creators/Authors contains: "Hill, Gary J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Lyαemitting galaxies (LAEs) 1.88 <z< 3.52. In addition to its cosmological measurements, these data enable studies of Lyαspectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyαprofile for thez∼ 2–3 epoch and to understand their physical properties. We find clear absorption wings around Lyαemission, which extend ∼2000 km s−1both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 <z< 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 <z< 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyαsystems. Simple simulations of Lyαradiative transfer can produce similar troughs due to absorption of light from background sources by Higas surrounding the LAEs.

     
    more » « less
  3. Abstract

    Supernova (SN) 2023ixf was discovered on 2023 May 19. The host galaxy, M101, was observed by the Hobby–Eberly Telescope Dark Energy Experiment collaboration over the period 2020 April 30–2020 July 10, using the Visible Integral-field Replicable Unit Spectrograph (3470 ≲λ≲ 5540 Å) on the 10 m Hobby–Eberly Telescope. The fiber filling factor within ±30″ of SN 2023ixf is 80% with a spatial resolution of 1″. Ther< 5.″5 surroundings are 100% covered. This allows us to analyze the spatially resolved preexplosion local environments of SN 2023ixf with nebular emission lines. The two-dimensional maps of the extinction and the star formation rate (SFR) surface density (ΣSFR) show weak increasing trends in the radial distributions within ther< 5.″5 regions, suggesting lower values of extinction and SFR in the vicinity of the progenitor of SN 2023ixf. The median extinction and that of the surface density of SFR withinr< 3″ areE(BV) = 0.06 ± 0.14, andΣSFR=105.44±0.66Myr1arcsec2.There is no significant change in extinction before and after the explosion. The gas metallicity does not change significantly with the separation from SN 2023ixf. The metal-rich branch of theR23calculations indicates that the gas metallicity around SN 2023ixf is similar to the solar metallicity (∼Z). The archival deep images from the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) show a clear detection of the progenitor of SN 2023ixf in thezband at 22.778 ± 0.063 mag, but nondetections in the remaining four bands of CFHTLS (u,g,r,i). The results suggest a massive progenitor of ≈22M.

     
    more » « less
  4. Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is an untargeted spectroscopic survey that aims to measure the expansion rate of the universe at z ∼ 2.4 to 1% precision for both H ( z ) and D A ( z ). HETDEX is in the process of mapping in excess of one million Ly α emitting (LAE) galaxies and a similar number of lower- z galaxies as a tracer of the large-scale structure. The success of the measurement is predicated on the post-observation separation of galaxies with Ly α emission from the lower- z interloping galaxies, primarily [O ii ], with low contamination and high recovery rates. The Emission Line eXplorer (ELiXer) is the principal classification tool for HETDEX, providing a tunable balance between contamination and completeness as dictated by science needs. By combining multiple selection criteria, ELiXer improves upon the 20 Å rest-frame equivalent width cut commonly used to distinguish LAEs from lower- z [O ii ] emitting galaxies. Despite a spectral resolving power, R ∼ 800, that cannot resolve the [O ii ] doublet, we demonstrate the ability to distinguish LAEs from foreground galaxies with 98.1% accuracy. We estimate a contamination rate of Ly α by [O ii ] of 1.2% and a Ly α recovery rate of 99.1% using the default ELiXer configuration. These rates meet the HETDEX science requirements. 
    more » « less
  5. Abstract

    We investigate the stellar mass–black hole mass (*BH) relation with type 1 active galactic nuclei (AGNs) down toBH=107M, corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz= 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs withBHranging from 107–1010Mthat are measured with single-epoch virial method using Civemission lines detected in the HETDEX spectra.*of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALEspectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the*BHrelation covering the unexplored low-mass ranges ofBH107108M, and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic*BHrelation atz∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime ofBH107108M. Our*BHrelation is inconsistent with theBHsuppression at the low-*regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations.

     
    more » « less
  6. Abstract

    We have extracted 636 spectra taken at the positions of 583 transient sources from the third data release of the Hobby–Eberly Telescope Dark Energy eXperiment (HETDEX). The transients were discovered by the Zwicky Transient Facility (ZTF) during 2018–2022. The HETDEX spectra provide a potential means to obtain classifications for a large number of objects found by photometric surveys for free. We attempt to explore and classify the spectra by utilizing several template-matching techniques. We have identified two transient sources, ZTF20aatpoos = AT 2020fiz and ZTF19abdkelq, as supernova (SN) candidates. We classify AT 2020fiz as a Type IIP SN observed ∼10 days after explosion, and we propose ZTF19abdkelq as a likely Type Ia SN caught ∼40 days after maximum light. ZTF photometry of these two sources are consistent with their classifications as SNe. Beside these two objects, we have confirmed several ZTF transients as variable active galactic nuclei based on their spectral appearance, and determined the host galaxy types of several other ZTF transients.

     
    more » « less
  7. Abstract

    We describe the ensemble properties of the 1.9 <z< 3.5 Lyman alpha emitters (LAEs) found in the HETDEX survey’s first public data release, HETDEX Public Source Catalog 1. Stacking the low-resolution (R∼ 800) spectra greatly increases the signal-to-noise ratio (S/N), revealing spectral features otherwise hidden by noise, and we show that the stacked spectrum is representative of an average member of the set. The flux-limited, LyαS/N restricted stack of 50,000 HETDEX LAEs shows the ensemble biweightaveragez∼ 2.6 LAE to be a blue (UV continuum slope ∼ −2.4 andE(B – V)< 0.1), moderately bright (MUV∼ −19.7) star-forming galaxy with strong Lyαemission (logLLyα∼ 42.8 andWλ(Lyα) ∼ 114 Å), and potentially significant leakage of ionizing radiation. The rest-frame UV light is dominated by a young, metal-poor stellar population with an average age of 5–15 Myr and metallicity of 0.2–0.3Z.

     
    more » « less
  8. Abstract

    We report an active galactic nucleus (AGN) with an extremely high equivalent width (EW), EWLyα+N V,rest≳921Å, in the rest frame, atz∼ 2.24 in the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX), as a representative case of the high-EW AGN population. The continuum level is a nondetection in the HETDEX spectrum; thus the measured EW is a lower limit. The source is detected with significant emission lines (>7σ) at Lyα+ Nvλ1241, Civλ1549, and a moderate emission line (∼4σ) at Heiiλ1640 within the wavelength coverage of HETDEX (3500–5500 Å). Ther-band magnitude is 24.57 from the Hyper Suprime-Cam-HETDEX joint survey with a detection limit ofr= 25.12 at 5σ. The Lyαemission line spans a clearly resolved region of ∼10″ (85 kpc) in diameter. The Lyαline profile is strongly double peaked. The spectral decomposed blue gas and red gas Lyαemission are separated by ∼1.″2 (10.1 kpc) with a line-of-sight velocity offset of ∼1100 km s−1. This source is probably an obscured AGN with powerful winds.

     
    more » « less
  9. Abstract

    We present the Lyαemission line luminosity function (LF) of the active galactic nuclei (AGN) in the first release of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) AGN catalog. The AGN are selected either by emission line pairs characteristic of AGN or by a single broad emission line, free of any photometric preselections (magnitude/color/morphology). The sample consists of 2346 AGN spanning 1.88 <z< 3.53, covering an effective area of 30.61 deg2. Approximately 2.6% of the HETDEX AGN are not detected at >5σconfidence atr∼ 26 in the deepestr-band images we have searched. The Lyαline luminosity ranges from ∼1042.3to 1045.9erg s−1. Our LyαLF shows a turnover luminosity with opposite slopes on the bright end and the faint end: The space density is highest atLLyα=1043.4erg s−1. We explore the evolution of the AGN LF over a broader redshift range (0.8 <z< 3); constructing the rest-frame ultraviolet (UV) LF with the 1450 Å monochromatic luminosity of the power-law component of the continuum (M1450) fromM1450∼ −18 to −27.5. We divide the sample into three redshift bins (z∼ 1.5, 2.1, and 2.6). In all three redshift bins, our UV LFs indicate that the space density of AGN is highest at the turnover luminosityM1450*with opposite slopes on the bright end and the faint end. TheM1450LFs in the three redshift bins can be well fit with a luminosity evolution and density evolution model: the turnover luminosity (M1450*) increases, and the turnover density (Φ*) decreases with increasing redshift.

     
    more » « less
  10. Abstract We present the first publicly released catalog of sources obtained from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). HETDEX is an integral field spectroscopic survey designed to measure the Hubble expansion parameter and angular diameter distance at 1.88 < z < 3.52 by using the spatial distribution of more than a million Ly α -emitting galaxies over a total target area of 540 deg 2 . The catalog comes from contiguous fiber spectra coverage of 25 deg 2 of sky from 2017 January through 2020 June, where object detection is performed through two complementary detection methods: one designed to search for line emission and the other a search for continuum emission. The HETDEX public release catalog is dominated by emission-line galaxies and includes 51,863 Ly α -emitting galaxy (LAE) identifications and 123,891 [O ii ]-emitting galaxies at z < 0.5. Also included in the catalog are 37,916 stars, 5274 low-redshift ( z < 0.5) galaxies without emission lines, and 4976 active galactic nuclei. The catalog provides sky coordinates, redshifts, line identifications, classification information, line fluxes, [O ii ] and Ly α line luminosities where applicable, and spectra for all identified sources processed by the HETDEX detection pipeline. Extensive testing demonstrates that HETDEX redshifts agree to within Δ z < 0.02, 96.1% of the time to those in external spectroscopic catalogs. We measure the photometric counterpart fraction in deep ancillary Hyper Suprime-Cam imaging and find that only 55.5% of the LAE sample has an r -band continuum counterpart down to a limiting magnitude of r ∼ 26.2 mag (AB) indicating that an LAE search of similar sensitivity to HETDEX with photometric preselection would miss nearly half of the HETDEX LAE catalog sample. Data access and details about the catalog can be found online at http://hetdex.org/ . A copy of the catalogs presented in this work (Version 3.2) is available to download at Zenodo doi: 10.5281/zenodo.7448504 . 
    more » « less