skip to main content


Search for: All records

Creators/Authors contains: "Hils, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Phase-I trigger readout electronics upgrade of the ATLAS Liquid Argon calorimeters enhances thephysics reach of the experiment during the upcoming operation atincreasing Large Hadron Collider luminosities.The new system, installed during the second Large Hadron Collider Long Shutdown,increases the trigger readout granularity by up to a factor of tenas well as its precision and range.Consequently, the background rejection at trigger level is improvedthrough enhanced filtering algorithms utilizing the additional informationfor topological discrimination of electromagnetic and hadronic shower shapes.This paper presents the final designs of the new electronic elements,their custom electronic devices, the proceduresused to validate their proper functioning, and the performance achievedduring the commissioning of this system. 
    more » « less
  2. A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 . 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes. 
    more » « less
  5. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy. 
    more » « less
  6. A bstract Measurements of the production cross-sections of the Standard Model (SM) Higgs boson ( H ) decaying into a pair of τ -leptons are presented. The measurements use data collected with the ATLAS detector from pp collisions produced at the Large Hadron Collider at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 139 fb − 1 . Leptonic ( τ → ℓν ℓ ν τ ) and hadronic ( τ → hadrons ν τ ) decays of the τ -lepton are considered. All measurements account for the branching ratio of H → ττ and are performed with a requirement |y H | < 2 . 5, where y H is the true Higgs boson rapidity. The cross-section of the pp → H → ττ process is measured to be 2 . 94 ± $$ 0.21{\left(\mathrm{stat}\right)}_{-0.32}^{+0.37} $$ 0.21 stat − 0.32 + 0.37 (syst) pb, in agreement with the SM prediction of 3 . 17 ± 0 . 09 pb. Inclusive cross-sections are determined separately for the four dominant production modes: 2 . 65 ± $$ 0.41{\left(\mathrm{stat}\right)}_{-0.67}^{+0.91} $$ 0.41 stat − 0.67 + 0.91 (syst) pb for gluon-gluon fusion, 0 . 197 ± $$ 0.028{\left(\mathrm{stat}\right)}_{-0.026}^{+0.032} $$ 0.028 stat − 0.026 + 0.032 (syst) pb for vector-boson fusion, 0 . 115 ± $$ 0.058{\left(\mathrm{stat}\right)}_{-0.040}^{+0.042} $$ 0.058 stat − 0.040 + 0.042 (syst) pb for vector-boson associated production, and 0 . 033 ± $$ 0.031{\left(\mathrm{stat}\right)}_{-0.017}^{+0.022} $$ 0.031 stat − 0.017 + 0.022 (syst) pb for top-quark pair associated production. Measurements in exclusive regions of the phase space, using the simplified template cross-section framework, are also performed. All results are in agreement with the SM predictions. 
    more » « less
  7. Abstract A search for long-lived charginos produced either directly or in the cascade decay of heavy prompt gluino states is presented. The search is based on proton–proton collision data collected at a centre-of-mass energy of $$\sqrt{s}$$ s  = 13 T $$\text {eV}$$ eV between 2015 and 2018 with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 136 fb $$^{-1}$$ - 1 . Long-lived charginos are characterised by a distinct signature of a short and then disappearing track, and are reconstructed using at least four measurements in the ATLAS pixel detector, with no subsequent measurements in the silicon-microstrip tracking volume nor any associated energy deposits in the calorimeter. The final state is complemented by a large missing transverse-momentum requirement for triggering purposes and at least one high-transverse-momentum jet. No excess above the expected backgrounds is observed. Exclusion limits are set at 95% confidence level on the masses of the chargino and gluino for different chargino lifetimes. Chargino masses up to 660 (210) G $$\text {eV}$$ eV are excluded in scenarios where the chargino is a pure wino (higgsino). For charginos produced during the cascade decay of a heavy gluino, gluinos with masses below 2.1 T $$\text {eV}$$ eV are excluded for a chargino mass of 300 G $$\text {eV}$$ eV and a lifetime of 0.2 ns. 
    more » « less