skip to main content


Search for: All records

Creators/Authors contains: "Hinderer, Tanja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modeling of the expected signals in extensions of general relativity. In this paper we model the gravitational wave emission of inspiralling binaries in scalar Gauss–Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to relative first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We also compute the scalar waveform to relative 0.5PN order beyond the leading −0.5PN order terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from general relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity. 
    more » « less
  2. Abstract In recent years, there have been significant advances in multimessenger astronomy due to the discovery of the first, and so far only confirmed, gravitational wave event with a simultaneous electromagnetic (EM) counterpart, as well as improvements in numerical simulations, gravitational wave (GW) detectors, and transient astronomy. This has led to the exciting possibility of performing joint analyses of the GW and EM data, providing additional constraints on fundamental properties of the binary progenitor and merger remnant. Here, we present a new Bayesian framework that allows inference of these properties, while taking into account the systematic modeling uncertainties that arise when mapping from GW binary progenitor properties to photometric light curves. We extend the relative binning method presented in Zackay et al. to include extrinsic GW parameters for fast analysis of the GW signal. The focus of our EM framework is on light curves arising from r -process nucleosynthesis in the ejected material during and after merger, the so-called kilonova, and particularly on black hole−neutron star systems. As a case study, we examine the recent detection of GW190425, where the primary object is consistent with being either a black hole or a neutron star. We show quantitatively how improved mapping between binary progenitor and outflow properties, and/or an increase in EM data quantity and quality are required in order to break degeneracies in the fundamental source parameters. 
    more » « less
  3. Abstract

    The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where each detector has a 'xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned toward low frequencies and working at cryogenic temperature. Here, we examine the scientific perspectives under possible variations of this reference design. We perform a detailed evaluation of the science case for a single triangular geometry observatory, and we compare it with the results obtained for a network of two L-shaped detectors (either parallel or misaligned) located in Europe, considering different choices of arm-length for both the triangle and the 2L geometries. We also study how the science output changes in the absence of the low-frequency instrument, both for the triangle and the 2L configurations. We examine a broad class of simple 'metrics' that quantify the science output, related to compact binary coalescences, multi-messenger astronomy and stochastic backgrounds, and we then examine the impact of different detector designs on a more specific set of scientific objectives.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. null (Ed.)
  5. null (Ed.)