skip to main content


Search for: All records

Creators/Authors contains: "Hinkle, J T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Using blazar light curves from the optical All-Sky Automated Survey for Supernovae (ASAS-SN) and the γ-ray Fermi-LAT telescope, we performed the most extensive statistical correlation study between both bands, using a sample of 1180 blazars. This is almost an order of magnitude larger than other recent studies. Blazars represent more than 98 per cent of the AGNs detected by Fermi-LAT and are the brightest γ-ray sources in the extragalactic sky. They are essential for studying the physical properties of astrophysical jets from central black holes. However, their γ-ray flare mechanism is not fully understood. Multiwavelength correlations help constrain the dominant mechanisms of blazar variability. We search for temporal relationships between optical and γ-ray bands. Using a Bayesian Block Decomposition, we detect 1414 optical and 510 γ-ray flares, we find a strong correlation between both bands. Among all the flares, we find 321 correlated flares from 133 blazars, and derive an average rest-frame time delay of only 1.1$_{-8.5}^{+7.1}$ d, with no difference between the flat-spectrum radio quasars, BL Lacertae-like objects or low, intermediate, and high-synchrotron peaked blazar classes. Our time-delay limit rules out the hadronic proton-synchrotron model as the driver for non-orphan flares and suggests a leptonic single-zone model. Limiting our search to well-defined light curves and removing 976 potential but unclear ‘orphan’ flares, we find 191 (13 per cent) and 115 (22 per cent) clear ‘orphan’ optical and γ-ray flares. The presence of ‘orphan’ flares in both bands challenges the standard one-zone blazar flare leptonic model and suggests multizone synchrotron sites or a hadronic model for some blazars. 
    more » « less
  2. ABSTRACT

    NGC 5273 is a known optical and X-ray variable AGN. We analyse new and archival IR, optical, UV, and X-ray data in order to characterize its long-term variability from 2000–2022. At least one optical changing-look event occurred between 2011 and 2014 when the AGN changed from a Type 1.8/1.9 Seyfert to a Type 1. It then faded considerably at all wavelengths, followed by a dramatic but slow increase in UV/optical brightness between 2021 and 2022. Near-IR (NIR) spectra in 2022 show prominent broad Paschen lines that are absent in an archival spectrum from 2010, making NGC 5273 one of the few AGNs to be observed changing-look in the NIR. We propose that NGC 5273 underwent multiple changing-look events between 2000 and 2022 – starting as a Type 1.8/1.9, NGC 5273 changes-look to a Type 1 temporarily in 2002 and again in 2014, reverting back to a Type 1.8/1.9 by 2005 and 2017, respectively. In 2022, it is again a Type 1 Seyfert. We characterize the changing-look events and their connection to the dynamic accretion and radiative processes in NGC 5273 and propose that the variable luminosity (and thus, Eddington ratio) of the source is changing how the broad-line region (BLR) reprocesses the continuum emission.

     
    more » « less
  3. ABSTRACT

    We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN) 2021gno by the ‘Precision Observations of Infant Supernova Explosions’ (POISE) project, starting less than 2 d after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca ii] lines, SN 2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the centre of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly stripped massive star with an ejecta mass of $0.8\, M_\odot$ and a 56Ni mass of 0.024 M⊙. The initial cooling phase (first light-curve peak) is explained by the presence of an extended circumstellar material comprising ∼$10^{-2}\, {\rm M}_{\odot }$ with an extension of $1100\, R_{\odot }$. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and their implications in terms of the proposed progenitor scenarios for Calcium-rich transients.

     
    more » « less
  4. ABSTRACT We present Multi-Unit Spectroscopic Explorer (MUSE) integral-field spectroscopy of ESO 253−G003, which hosts a known active galactic nucleus (AGN) and the periodic nuclear transient ASASSN-14ko, observed as part of the All-weather MUse Supernova Integral-field of Nearby Galaxies survey. The MUSE observations reveal that the inner region hosts two AGN separated by $1.4\pm 0.1~\rm {kpc}$ (≈1${_{.}^{\prime\prime}}$7). The brighter nucleus has asymmetric broad permitted emission-line profiles and is associated with the archival AGN designation. The fainter nucleus does not have a broad emission-line component but exhibits other AGN characteristics, including $\hbox{$v_{\rm {FWHM}}$} \approx 700~\hbox{km~s$^{-1}$}$ forbidden line emission, $\rm{\log _{10}(\rm{[O\,\small {III}]}/\rm{H\beta})} \approx 1.1$, and high-excitation potential emission lines, such as [Fe vii] λ6086 and He ii λ4686. The host galaxy exhibits a disturbed morphology with large kpc-scale tidal features, potential outflows from both nuclei, and a likely superbubble. A circular relativistic disc model cannot reproduce the asymmetric broad emission-line profiles in the brighter nucleus, but two non-axisymmetric disc models provide good fits to the broad emission-line profiles: an elliptical disc model and a circular disc + spiral arm model. Implications for the periodic nuclear transient ASASSN-14ko are discussed. 
    more » « less
  5. null (Ed.)
    ABSTRACT We characterize the extreme heartbeat star system MACHO 80.7443.1718 in the Large Magellanic Cloud using Transiting Exoplanet Survey Satellite (TESS) photometry and spectroscopic observations from the Magellan Inamori Kyocera Echelle (MIKE) and SOAR Goodman spectographs. MACHO 80.7443.1718 was first identified as a heartbeat star system in the All-Sky Automated Survey for SuperNovae (ASAS-SN) with $P_{\rm orb}=32.836\pm 0.008\, {\rm d}$. MACHO 80.7443.1718 is a young (∼6 Myr), massive binary, composed of a B0 Iae supergiant with $M_1 \simeq 35\, {\rm M}_\odot$ and an O9.5V secondary with $M_2 \simeq 16\, {\rm M}_\odot$ on an eccentric (e = 0.51 ± 0.03) orbit. In addition to having the largest variability amplitude amongst all known heartbeats stars, MACHO 80.7443.1718 is also one of the most massive heartbeat stars yet discovered. The B[e] supergiant has Balmer emission lines and permitted/forbidden metallic emission lines associated with a circumstellar disc. The disc rapidly dissipates at periastron that could indicate mass transfer to the secondary, but re-emerges immediately following periastron passage. MACHO 80.7443.1718 also shows tidally excited oscillations at the N = 25 and N = 41 orbital harmonics and has a rotational period of 4.4 d. 
    more » « less
  6. null (Ed.)
    ABSTRACT We report the discovery of the closest known black hole candidate as a binary companion to V723 Mon. V723 Mon is a nearby ($d\sim 460\, \rm pc$), bright (V ≃ 8.3 mag), evolved (Teff, giant ≃ 4440 K, and Lgiant ≃ 173 L⊙) red giant in a high mass function, f(M) = 1.72 ± 0.01 M⊙, nearly circular binary (P = 59.9 d, e ≃ 0). V723 Mon is a known variable star, previously classified as an eclipsing binary, but its All-Sky Automated Survey, Kilodegree Extremely Little Telescope, and Transiting Exoplanet Survey Satellite light curves are those of a nearly edge-on ellipsoidal variable. Detailed models of the light curves constrained by the period, radial velocities, and stellar temperature give an inclination of $87.0^{\circ ^{+1.7^\circ }}_{-1.4^\circ }$, a mass ratio of q ≃ 0.33 ± 0.02, a companion mass of Mcomp = 3.04 ± 0.06 M⊙, a stellar radius of Rgiant = 24.9 ± 0.7 R⊙, and a giant mass of Mgiant = 1.00 ± 0.07 M⊙. We identify a likely non-stellar, diffuse veiling component with contributions in the B and V band of ${\sim }63{{\ \rm per\ cent}}$ and ${\sim }24{{\ \rm per\ cent}}$, respectively. The SED and the absence of continuum eclipses imply that the companion mass must be dominated by a compact object. We do observe eclipses of the Balmer lines when the dark companion passes behind the giant, but their velocity spreads are low compared to observed accretion discs. The X-ray luminosity of the system is $L_{\rm X}\simeq 7.6\times 10^{29}~\rm ergs~s^{-1}$, corresponding to L/Ledd ∼ 10−9. The simplest explanation for the massive companion is a single compact object, most likely a black hole in the ‘mass gap’. 
    more » « less