skip to main content


Search for: All records

Creators/Authors contains: "Hoecker, Tyler J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Subalpine forests that historically burned every 100–300 yr are expected to burn more frequently as climate warms, perhaps before trees reach reproductive maturity or produce a serotinous seedbank. Tree regeneration after short‐interval (<30‐yr) high‐severity fire will increasingly rely on seed dispersal from unburned trees, but how dispersal varies with age and structure of surrounding forest is poorly understood. We studied wind dispersal of three conifers (Picea engelmannii,Abies lasiocarpa, andPinus contortavar.latifolia, which can be serotinous and nonserotinous) after a stand‐replacing fire that burned young (≤30 yr) and older (>100 yr)P. contortaforest in Grand Teton National Park (Wyoming, USA). We asked how propagule pressure varied with time since last fire, how seed delivery into burned forest varied with age and structure of live forest edges, what variables explained seed delivery into burned forest, and how spatial patterns of delivery across the burned area could vary with alternate patterns of surrounding live forest age. Seeds were collected in traps along 100‐m transects (n = 18) extending from live forest edges of varying age (18, 30, and >100 yr) into areas of recent (2‐yr) high‐severity fire, and along transects in live forests to measure propagule pressure. Propagule pressure was low in 18‐yr‐old stands (~8 seeds/m2) and similarly greater in 30‐ and 100‐yr‐old stands (~32 seeds/m2). Mean dispersal distance was lowest from 18‐yr‐old edges and greatest from >100‐yr‐old edges. Seed delivery into burned forest declined with increasing distance and increased with height of trees at live forest edges, and was consistently higher forP. contortathan for other conifers. Empirical dispersal kernels revealed that seed delivery from 18‐yr‐old edges was very low (≤2.4 seeds/m2) and concentrated within 10 m of the live edge, whereas seed delivery from >100‐yr‐old edges was >4.9 seeds/m2out to 80 m. When extrapolated throughout the burned landscape, estimated seed delivery was low (<49,400 seeds/ha) in >70% of areas that burned in short‐interval fire (<30 yr). As fire frequency increases, immaturity risk will be compounded in short‐interval fires because seed dispersal from surrounding young trees is limited.

     
    more » « less
  2. Abstract

    Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high‐latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial–millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire‐regime variability, we synthesized 27 published sediment‐charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000–4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad‐scale environmental change, including climate warming and biome‐scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire‐regime change across our study areas during the Holocene. This finding implies broad‐scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st‐century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more.

     
    more » « less