skip to main content


Search for: All records

Creators/Authors contains: "Homiller, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract Anomaly detection relies on designing a score to determine whether a particular event is uncharacteristic of a given background distribution. One way to define a score is to use autoencoders, which rely on the ability to reconstruct certain types of data (background) but not others (signals). In this paper, we study some challenges associated with variational autoencoders, such as the dependence on hyperparameters and the metric used, in the context of anomalous signal (top and W ) jets in a QCD background. We find that the hyperparameter choices strongly affect the network performance and that the optimal parameters for one signal are non-optimal for another. In exploring the networks, we uncover a connection between the latent space of a variational autoencoder trained using mean-squared-error and the optimal transport distances within the dataset. We then show that optimal transport distances to representative events in the background dataset can be used directly for anomaly detection, with performance comparable to the autoencoders. Whether using autoencoders or optimal transport distances for anomaly detection, we find that the choices that best represent the background are not necessarily best for signal identification. These challenges with unsupervised anomaly detection bolster the case for additional exploration of semi-supervised or alternative approaches. 
    more » « less
  2. null (Ed.)
  3. Abstract We lay out a comprehensive physics case for a future high-energy muon collider, exploring a range of collision energies (from 1 to 100 TeV) and luminosities. We highlight the advantages of such a collider over proposed alternatives. We show how one can leverage both the point-like nature of the muons themselves as well as the cloud of electroweak radiation that surrounds the beam to blur the dichotomy between energy and precision in the search for new physics. The physics case is buttressed by a range of studies with applications to electroweak symmetry breaking, dark matter, and the naturalness of the weak scale. Furthermore, we make sharp connections with complementary experiments that are probing new physics effects using electric dipole moments, flavor violation, and gravitational waves. An extensive appendix provides cross section predictions as a function of the center-of-mass energy for many canonical simplified models. 
    more » « less