skip to main content


Search for: All records

Creators/Authors contains: "Hondula, David M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As demand for electricity increases on an already strained electrical supply due to urbanization, population growth, and climate change, the likelihood of power outages will also increase. While researchers understand that the number of electrical grid disturbances is increasing, we do not adequately understand how increased power outages will affect a society that has become increasingly dependent on a reliable electric supply. This systematic review aims to understand how power outages have affected society, primarily through health impacts, and identify populations most vulnerable to power outages based on the conclusions from prior studies. Based on search parameters, 762 articles were initially identified, of which only 50 discussed the social impacts of power outages in North America. According to this literature, racial and ethnic minorities, especially Blacks or African Americans, those of lower socioeconomic status, children, older adults, and those living in rural areas experienced more significant impacts from previous power outages. Additionally, criminal activity increased during prolonged power outages with both pro-social and anti-social behaviors observed. Providing financial assistance or resources to replace spoiled goods can reduce crime. Future research on this topic must consider the financial effects of power outages, how power outage impacts seasonally vary, and the different durations of power outage impacts. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available July 3, 2024
  3. Urban heat exposure is an increasing health risk among urban dwellers. Many cities are considering accommodating active mobility, especially walking and biking, to reduce greenhouse gas emissions. However, promoting active mobility without proper planning and transportation infrastructure to combat extreme heat exposure may cause more heat-related morbidity and mortality, particularly in future with projected climate change. This study estimated the effectiveness of active trip heat exposure mitigation under built environment and travel behavior change. Simulations of the Phoenix metro region's 624,987 active trips were conducted using the activity-based travel model (ABM), mean radiant temperature (T MRT , net human radiation exposure), transportation network, and local climate zones. Two scenarios were designed to reduce traveler exposure: one that focuses on built environment change (making neighborhoods cooler) and the other on travel behavior (switching from shorter travel time but higher exposure routes to longer travel time but cooler routes) change. Travelers experienced T MRT heat exposure ranging from 29°C to 76°C (84°F to 168°F) without environmental or behavioral change. Active trip T MRT exposures were reduced by an average of 1.2–3.7°C when the built environment was changed from a hotter to cooler design. Behavioral changes cooled up to 10 times more trips than changes in built environment changes. The marginal benefit of cooling decreased as the number of cooled corridors transformed increased. When the most traveled 10 km of corridors were cooled, the marginal benefit affected over 1,000 trips/km. However, cooling all corridors results in marginal benefits as low as 1 trip/km. The results reveal that heavily traveled corridors should be prioritized with limited resources, and the best cooling results come from environment and travel behavior change together. The results show how to surgically invest in travel behavior and built environment change to most effectively protect active travelers. 
    more » « less
  4. Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure. 
    more » « less
  5. Abstract

    Exertional heat illness and stroke are serious concerns across youth and college sports programs. While some teams and governing bodies have adopted the wet bulb globe temperature (WBGT), few practitioners use measurements on the field of play; rather, they often rely on regionally modeled or estimated WBGT. However, urban development-induced heat and projected climate change increase exposure to heat. We examined WBGT levels between various athletic surfaces and regional weather stations under current and projected climates and in hot-humid and hot-dry weather regimes in the southwest U.S. in Tempe, Arizona. On-site sun-exposed WBGT data across five days (07:00–19:00 local time) in June (dry) and August (humid) were collected over five athletic surfaces: rubber, artificial turf, clay, grass, and asphalt. Weather station data were used to estimate regional WBGT (via the Liljegren model) and compared to on-site, observed WBGT. Finally, projected changes to WBGT were modeled under mid-century and late-century conditions. On-field WBGT observations were, on average, significantly higher than WBGT estimated from regional weather stations by 2.4 °C–2.5 °C, with mean on-field WBGT across both months of 28.5 ± 2.76 °C (versus 25.8 ± 3.21 °C regionally). However, between-athletic surface WBGT differences were largely insignificant. Significantly higher mean WBGTs occurred in August (30.1 ± 2.35 °C) versus June (26.9 ± 2.19 °C) across all venues; August conditions reached ‘limit activity’ or ‘cancellation’ thresholds for 6–8 h and 2–4 h of the day, respectively, for all sports venues. Climate projections show increased WBGTs across measurement locations, dependent on projection and period, with average August WBGT under the highest representative concentration pathway causing all-day activity cancellations. Practitioners are encouraged to use WBGT devices within the vicinity of the fields of play, yet should not rely on regional weather station estimations without corrections used. Heat concerns are expected to increase in the future, underlining the need for athlete monitoring, local cooling design strategies, and heat adaptation for safety.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    High nighttime urban air temperatures increase health risks and economic vulnerability of people globally. While recent studies have highlighted nighttime heat mitigation effects of urban vegetation, the magnitude and variability of vegetation-derived urban nighttime cooling differs greatly among cities. We hypothesize that urban vegetation-derived nighttime air cooling is driven by vegetation density whose effect is regulated by aridity through increasing transpiration. We test this hypothesis by deploying microclimate sensors across eight United States cities and investigating relationships of nighttime air temperature and urban vegetation throughout a summer season. Urban vegetation decreased nighttime air temperature in all cities. Vegetation cooling magnitudes increased as a function of aridity, resulting in the lowest cooling magnitude of 1.4 °C in the most humid city, Miami, FL, and 5.6 °C in the most arid city, Las Vegas, NV. Consistent with the differences among cities, the cooling effect increased during heat waves in all cities. For cities that experience a summer monsoon, Phoenix and Tucson, AZ, the cooling magnitude was larger during the more arid pre-monsoon season than during the more humid monsoon period. Our results place the large differences among previous measurements of vegetation nighttime urban cooling into a coherent physiological framework dependent on plant transpiration. This work informs urban heat risk planning by providing a framework for using urban vegetation as an environmental justice tool and can help identify where and when urban vegetation has the largest effect on mitigating nighttime temperatures.

     
    more » « less