skip to main content


Search for: All records

Creators/Authors contains: "Horn, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The integration of computer programming and music-making has a rich history dating back to the 1950s. While there has been substantial prior work on the creative and cognitive affordances of programming languages for engaging in musical tasks, there is less work that attempts to understand the theoretical implications of music and code as literacies in collision. In this paper, we report on a study in which five undergraduate students with experience in both music and coding completed two creative musical tasks: one using conventional instruments and tools and one using Python code in an online music-coding environment. In combining representational infrastructures from music and code, both undergo transformations. We introduce semiotic theories of translation and transcription to make sense of the music-coding process and describe strategies that participants devised in their creative process. 
    more » « less
    Free, publicly-accessible full text available June 23, 2024
  2. Elegant terns Thalasseus elegans breed in a very limited area of the northern Gulf of California and the Pacific coast of southern California, with up to 95% (mean 78%, 1991–2014, Perez et al., 2020 ) of the population nesting on Isla Rasa in the northern Gulf of California. On Isla Rasa, the primary nesting colony, elegant terns suffered predation by rodents which raised the possibility of population extinction, with a substantial proportion of the world population nesting on this single island. Because of this threat, rodents were successfully removed from Isla Rasa in 1995. The removal of rodents from Isla Rasa led to a near immediate increase in the population of elegant terns. That increase was associated with a changing pattern in dispersal by the terns, including extraordinary movements to the Gulf of Mexico, the Atlantic coast of the United States north to Massachusetts, and, remarkably, to western Europe. A few elegant terns successfully bred at these European localities during 2009 to the present. In this paper we use this exceptional example of long-distance dispersal to illustrate how rapid population growth during ∼ 1995 to present can lead to successful colonization of remote sites through repeated instances of vagrancy. We tested four Hypotheses that together support the idea that the growing population of elegant terns has produced increasing numbers of young, and these young have spread, through the mechanism of vagrancy, to the Pacific Northwest, the east coast of the United States, and western Europe. Our Hypotheses are: (1) The nesting population of elegant terns within their core nesting range has increased since removal of rodents from Isla Rasa; (2) Occurrence of vagrant elegant terns in the Pacific Northwest is driven by population growth within the core breeding range. (3) Occurrence of vagrant elegant terns at the east coast of the United States is driven by population growth within the core breeding range. (4) Occurrence and colonization of western Europe by elegant terns is driven by nesting population size within the core breeding range. Corollaries of these Hypotheses are, (i) that there is a time lag in occurrence of vagrants at each of these areas, based on increasing distance from the core breeding range and (ii) the number of vagrants in any given year is also related to sea surface temperature (SST), as expressed by Oceanic Niño Index, a proxy for food resource levels. Generally we found strong statistical support for each of these Hypotheses; an exception was for the occurrence of elegant terns in the Pacific Northwest, which initially occurred following El Niño events (low food supply) and profound breeding failure, but later corresponding to cold water years with high breeding success. We use elegant terns, exceptional for the highly restricted breeding range and sustained population growth over 25 years, to illustrate how growing populations may colonize very distant habitats through repeated instances of vagrancy. 
    more » « less
  3. null (Ed.)
    Computer science educators often use multiple creative computing platforms to motivate and support students learning computer science. Arguably, we understand little about the complementary ways in which the various platforms build on students' prior experiences. This study compares two CS+music platforms used by middle school students in a summer camp to understand the unique affordances of each platform at activating and building upon prior music and computing experiences. We assess interest formation through pre and post student surveys and via interviews on the final day of the camp. The findings suggest that using different approaches to CS+music platform design may help engage students with different levels of prior music and coding experience. 
    more » « less
  4. null (Ed.)
    Scientists have long sought to engage public audiences in research through citizen science projects such as biological surveys or distributed data collection. Recent online platforms have expanded the scope of what people-powered research can mean. Science museums are unique cultural institutions that translate scientific discovery for public audiences, while conducting research of their own. This makes museums compelling sites for engaging audiences directly in scientific research, but there are associated challenges as well. This project engages public audiences in contributing to real research as part of their visit to a museum. We present the design and evaluation of U!Scientist, an interactive multi-person tabletop exhibit based on the online Zooniverse project, Galaxy Zoo. We installed U!Scientist in a planetarium and collected video, computer logs, naturalistic observations, and surveys with visitors. Our findings demonstrate the potential of exhibits to engage new audiences in collaborative scientific discussions as part of people-powered research. 
    more » « less
  5. Integrating computational thinking (CT) in the science classroom presents the opportunity to simultaneously broaden participation in computing, enhance science content learning, and engage students in authentic scientific practice. However, there is a lot more to learn on how teachers might integrate CT activities within their existing curricula. In this work, we describe a process of co-design with researchers and teachers to develop CT-infused science curricula. Specifically, we present a case study of one veteran physics teacher whose conception of CT during a professional development institute changed over time. We use this case study to explore how CT is perceived in physics instruction, a field that has a long history of computational learning opportunities. We also discuss how a co-design process led to the development of a lens through which to identify fruitful opportunities to integrate CT activities in physics curricula which we term computational transparency–purposefully revealing the inner workings of computational tools that students already use in the classroom. 
    more » « less
  6. null (Ed.)
    Over the last decade, large multitouch displays have become commonplace in museums and other public spaces. While there is preliminary evidence that exhibits based on tangible technologies can be more attractive and engaging for visitors than displays alone, very little empirical research has directly compared tangible to large multitouch displays in museums. In this paper, we present a study comparing the use of a tangible and a multitouch tabletop interface in an exhibit designed to explore musical rhythms. From an observation pool of 791 museum visitors, a total of 227 people in 82 groups interacted with one of the two versions of our exhibit. We share the exhibit design, experimental setup, and methods and measures. Our findings highlight advantages of tangible interaction in terms of attracting and engaging children and families. However, the two exhibits were equally effective at supporting collaborative interaction within visitor groups. We conclude with a discussion of the implications for museum exhibit design vis-à-vis visitor engagement and learning. 
    more » « less
  7. Teaching science inquiry practices, especially the more contemporary ones, such as computational thinking practices, requires designing newer learning environments and appropriate pedagogical scaffolds. Using such learning environments, when students construct knowledge about disciplinary ideas using inquiry practices, it is important that they make connections between the two. We call such connections epistemic connections, which are about constructing knowledge using science inquiry practices. In this paper, we discuss the design of a computational thinking integrated biology unit as an Emergent Systems Microworlds (ESM) based curriculum. Using Epistemic Network Analysis, we investigate how the design of unit support students’ learning through making epistemic connections. We also analyze the teacher’s pedagogical moves to scaffold making such connections. This work implies that to support students’ epistemic connections between science inquiry practices and disciplinary ideas, it is critical to design restructured learning environments like ESMs, aligned curricular activities and provide appropriate pedagogical scaffolds. 
    more » « less
  8. Next Generation Science Standards foreground science practices as important goals of science education. In this paper, we discuss the design of block-based modeling environments for learning experiences that ask students to actively explore complex systems via computer programming. Specifically, we discuss the implications of the design and selection of the types of blocks given to learners in these environments and how they may affect students’ thinking about the process of modeling and theorizing. We conclude with a discussion of some preliminary findings in this design based research to inform design principles for block-based programming of science phenomena as a medium for learning to build theory. 
    more » « less
  9. null (Ed.)
    There has been a growing interest in the use of computer-based models of scientific phenomena as part of classroom curricula, especially models that learners create for themselves. However, while studies show that constructing computational models of phenomena can serve as a powerful foundation for learning science, this approach has struggled to gain widespread adoption in classrooms because it not only requires teachers to learn sophisticated technological tools (such as computer programming), but it also requires precious instructional time to introduce these tools to students. Moreover, many core scientific topics such as the kinetic molecular theory, natural selection, and electricity are difficult to model even with novice-friendly environments. To address these limitations, we present a novel design approach called phenomenological programming that builds on students' intuitive understanding of real-world objects, patterns, and events to support the construction of agent-based computational models. We present preliminary case studies and discuss their implications for STEM content learning and the learnability and expressive power of phenomenological programming. 
    more » « less
  10. TunePad is a free, online platform designed with the goal of empowering diverse communities of learners to create and share music through code. We are interested in the idea of music as a pervasive form of literacy with abundant connections to concepts of computer programming. Over the past three years we have developed and refined successive prototypes with over 500 middle school and high school students in a variety of learning spaces including schools, libraries, summer camps, and other out-of-school programs. This paper shares the current TunePad design along with data from three summer camps for middle school students that involved daily work with the platform. Through these camps we saw significant gains in learners’ attitudes around computer programming as measured through pre-post surveys. We also share a theoretical perspective on music and coding as an intersection of literacies that we reflect on through student-created artifacts. 
    more » « less