skip to main content


Search for: All records

Creators/Authors contains: "Hossain, Md Faruk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A glucose biofuel cell is presented using laser induced 3D graphene (LIG) substrate integrated with catalytic active nanomaterials for harnessing the biochemical energy of glucose. The LIG anode comprised glucose dehydrogenase immobilized on reduced graphene oxide and multiwalled carbon nanotubes (RGO/MWCNTs) nanocomposite for glucose oxidation. The LIG cathode is modified with RGO/MWCNTs and silver oxide (Ag 2 O) nanocomposites for the reduction of oxygen. The assembled biofuel cell exhibited a linear peak power response up to 18 mM glucose with sensitivity of 0.63 μW mM -1 cm −2 and exhibited good linearity (r 2 = 0.99). The glucose biofuel cell showed an open-circuit voltage of 0.365 V, a maximum power density of 11.3 μW cm −2 at a cell voltage of 0.25 V, and a short-circuit current density of 45.18 μA cm −2 when operating in 18 mM glucose. Cyclic voltammetry revealed the bioanode exhibited similar linearity for the detection of glucose. These results demonstrate that LIG based bioelectrodes offer great promise for diverse applications in the development of hybrid biofuel cell and biosensor technology. 
    more » « less