skip to main content


Search for: All records

Creators/Authors contains: "Hotokezaka, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A core collapse supernova occurs when exothermic fusion ceases in the core of a massive star, which is typically caused by exhaustion of nuclear fuel. Theory predicts that fusion could be interrupted earlier by merging of the star with a compact binary companion. We report a luminous radio transient, VT J121001+495647, found in the Very Large Array Sky Survey. The radio emission is consistent with supernova ejecta colliding with a dense shell of material, potentially ejected by binary interaction in the centuries before explosion. We associate the supernova with an archival x-ray transient, which implies that a relativistic jet was launched during the explosion. The combination of an early relativistic jet and late-time dense interaction is consistent with expectations for a merger-driven explosion. 
    more » « less
  2. ABSTRACT

    We present results from a search for the radio counterpart to the possible neutron star–black hole merger GW190814 with the Australian Square Kilometre Array Pathfinder. We have carried out 10 epochs of observation spanning 2–655 d post-merger at a frequency of 944 MHz. Each observation covered 30 deg2, corresponding to 87 per cent of the posterior distribution of the merger’s sky location. We conducted an untargeted search for radio transients in the field, as well as a targeted search for transients associated with known galaxies. We find one radio transient, ASKAP J005022.3−230349, but conclude that it is unlikely to be associated with the merger. We use our observations to place constraints on the inclination angle of the merger and the density of the surrounding environment by comparing our non-detection to model predictions for radio emission from compact binary coalescences. This survey is also the most comprehensive widefield search (in terms of sensitivity and both areal and temporal coverage) for radio transients to-date and we calculate the radio transient surface density at 944 MHz.

     
    more » « less
  3. Abstract We present James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/Near Infrared Spectrograph (0.6–5.5 micron) and Mid-Infrared Instrument (5–12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power law, with F ν ∝ ν − β , we obtain β ≈ 0.35, modified by substantial dust extinction with A V = 4.9. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post-jet-break model, with electron index p < 2, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/near-IR to X-SHOOTER spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disk-like host galaxy, viewed close to edge-on, that further complicates the isolation of any SN component. The host galaxy appears rather typical among long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment. 
    more » « less
  4. Abstract We present the full panchromatic afterglow light-curve data of GW170817, including new radio data as well as archival optical and X-ray data, between 0.5 and 940 days post-merger. By compiling all archival data and reprocessing a subset of it, we have evaluated the impact of differences in data processing or flux determination methods used by different groups and attempted to mitigate these differences to provide a more uniform data set. Simple power-law fits to the uniform afterglow light curve indicate a t 0.86±0.04 rise, a t −1.92±0.12 decline, and a peak occurring at 155 ± 4 days. The afterglow is optically thin throughout its evolution, consistent with a single spectral index (−0.584 ± 0.002) across all epochs. This gives a precise and updated estimate of the electron power-law index, p = 2.168 ± 0.004. By studying the diffuse X-ray emission from the host galaxy, we place a conservative upper limit on the hot ionized interstellar medium density, <0.01 cm −3 , consistent with previous afterglow studies. Using the late-time afterglow data we rule out any long-lived neutron star remnant having a magnetic field strength between 10 10.4 and 10 16 G. Our fits to the afterglow data using an analytical model that includes Very Long Baseline Interferometry proper motion from Mooley et al., and a structured jet model that ignores the proper motion, indicates that the proper-motion measurement needs to be considered when seeking an accurate estimate of the viewing angle. 
    more » « less