skip to main content


Search for: All records

Creators/Authors contains: "Howard, Andrew W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We compare systems with single giant planets to systems with multiple giant planets using a catalog of planets from a high-precision radial velocity survey of FGKM stars. Our comparison focuses on orbital properties, planet masses, and host-star properties. We use hierarchical methods to model the orbital eccentricity distributions of giant singles and giant multiples, and find that the distributions are distinct. The multiple giant planets typically have moderate eccentricities and their eccentricity distribution extends toe= 0.47 (90th percentile), while the single giant planets have a pileup of nearly circular orbits and a long tail that extends toe= 0.77. We determine that the stellar hosts of multiple giants are distinctly more metal rich than the hosts of solitary giants, with respective mean metallicities of 0.228 ± 0.027 versus 0.129 ± 0.019 dex. We measure the distinct occurrence distributions of single and multiple giants with respect to orbital separation, and find that single gas giants have a ∼2.3σsignificant hot Jupiter (a< 0.06) pileup not seen among multigiant systems. We find that the median mass (Msini) of giants in multiples is nearly double that of single giants (1.71MJversus 0.92MJ). We find that giant planets in the same system have correlated masses, analogous to the “peas in a pod” effect seen among less-massive planets.

     
    more » « less
  2. ABSTRACT

    Dynamical evolution within planetary systems can cause planets to be engulfed by their host stars. Following engulfment, the stellar photosphere abundance pattern will reflect accretion of rocky material from planets. Multistar systems are excellent environments to search for such abundance trends because stellar companions form from the same natal gas cloud and are thus expected to share primordial chemical compositions to within 0.03–0.05 dex. Abundance measurements have occasionally yielded rocky enhancements, but a few observations targeted known planetary systems. To address this gap, we carried out a Keck-HIRES survey of 36 multistar systems, where at least one star is a known planet host. We found that only HAT-P-4 exhibits an abundance pattern suggestive of engulfment but is more likely primordial based on its large projected separation (30 000 ± 140 au) that exceeds typical turbulence scales in molecular clouds. To understand the lack of engulfment detections among our systems, we quantified the strength and duration of refractory enrichments in stellar photospheres using mesa stellar models. We found that observable signatures from 10 M⊕ engulfment events last for ∼90 Myr in 1 M⊙ stars. Signatures are largest and longest lived for 1.1–1.2 M⊙ stars, but are no longer observable ∼2 Gyr post-engulfment. This indicates that engulfment will rarely be detected in systems that are several Gyr old.

     
    more » « less
  3. ABSTRACT

    In this work, we present the discovery and confirmation of two hot Jupiters orbiting red giant stars, TOI-4377 b and TOI-4551 b, observed by Transiting Exoplanet Survey Satellite in the Southern ecliptic hemisphere and later followed-up with radial-velocity (RV) observations. For TOI-4377 b, we report a mass of $0.957^{+0.089}_{-0.087} \ M_\mathrm{J}$ and a inflated radius of 1.348 ± 0.081 RJ orbiting an evolved intermediate-mass star (1.36 M⊙ and 3.52 R⊙; TIC 394918211) on a period of of 4.378 d. For TOI-4551 b, we report a mass of 1.49 ± 0.13 MJ and a radius that is not obviously inflated of $1.058^{+0.110}_{-0.062} \ R_\mathrm{J}$, also orbiting an evolved intermediate-mass star (1.31 M⊙ and 3.55 R⊙; TIC 204650483) on a period of 9.956 d. We place both planets in context of known systems with hot Jupiters orbiting evolved hosts, and note that both planets follow the observed trend of the known stellar incident flux-planetary radius relation observed for these short-period giants. Additionally, we produce planetary interior models to estimate the heating efficiency with which stellar incident flux is deposited in the planet’s interior, estimating values of $1.91 \pm 0.48~{{\ \rm per\ cent}}$ and $2.19 \pm 0.45~{{\ \rm per\ cent}}$ for TOI-4377 b and TOI-4551 b, respectively. These values are in line with the known population of hot Jupiters, including hot Jupiters orbiting main-sequence hosts, which suggests that the radii of our planets have re-inflated in step with their parent star’s brightening as they evolved into the post-main sequence. Finally, we evaluate the potential to observe orbital decay in both systems.

     
    more » « less
  4. Abstract

    An intriguing pattern among exoplanets is the lack of detected planets between approximately 1.5Rand 2.0R. One proposed explanation for this “radius gap” is the photoevaporation of planetary atmospheres, a theory that can be tested by studying individual planetary systems. Kepler-105 is an ideal system for such testing due to the ordering and sizes of its planets. Kepler-105 is a Sun-like star that hosts two planets straddling the radius gap in a rare architecture with the larger planet closer to the host star (Rb= 2.53 ± 0.07R,Pb= 5.41 days,Rc= 1.44 ± 0.04R,Pc= 7.13 days). If photoevaporation sculpted the atmospheres of these planets, then Kepler-105b would need to be much more massive than Kepler-105c to retain its atmosphere, given its closer proximity to the host star. To test this hypothesis, we simultaneously analyzed radial velocities and transit-timing variations of the Kepler-105 system, measuring disparate masses ofMb= 10.8 ± 2.3M(ρb= 3.68 ± 0.84 g cm−3) andMc= 5.6 ± 1.2M(ρc= 10.4 ± 2.39 g cm−3). Based on these masses, the difference in gas envelope content of the Kepler-105 planets could be entirely due to photoevaporation (in 76% of scenarios), although other mechanisms like core-powered mass loss could have played a role for some planet albedos.

     
    more » « less
  5. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    As part of the Keck Planet Finder (KPF) project, a Fiber Injection Unit (FIU) was implemented and will be deployed on the Keck Ⅰ telescope, with the aim of providing dispersion compensated and tip/tilt corrected light to the KPF instrument and accompanying H&K spectrometer. The goal of KPF is to characterize exoplanets via the radial velocity technique, with a single measurement precision of 30cm/s or better. To accomplish this, the FIU must provide a stable F-number and chief ray angle to the Science and Calcium H&K fibers. Our design approach was use a planar optical layout with atmospheric dispersion compensation for both the Science and Calcium H&K arms. A SWIR guider camera and piezo tip/tilt mirror are used to keep the target centered on the fibers. 
    more » « less
  6. Abstract

    We present and confirm TOI-1751 b, a transiting sub-Neptune orbiting a slightly evolved, solar-type, metal-poor star (Teff= 5996 ± 110 K,log(g)=4.2±0.1,V= 9.3 mag, [Fe/H] = −0.40 ± 0.06 dex) every 37.47 days. We use TESS photometry to measure a planet radius of2.770.07+0.15R. We also use both Keck/HIRES and APF/Levy radial velocities (RV) to derive a planet mass of14.53.14+3.15M, and thus a planet density of 3.6 ± 0.9 g cm−3. There is also a long-period (∼400 days) signal that is observed in only the Keck/HIRES data. We conclude that this long-period signal is not planetary in nature and is likely due to the window function of the Keck/HIRES observations. This highlights the role of complementary observations from multiple observatories to identify and exclude aliases in RV data. Finally, we investigate the potential compositions of this planet, including rocky and water-rich solutions, as well as theoretical irradiated ocean models. TOI-1751 b is a warm sub-Neptune with an equilibrium temperature of ∼820 K. As TOI-1751 is a metal-poor star, TOI-1751 b may have formed in a water-enriched formation environment. We thus favor a volatile-rich interior composition for this planet.

     
    more » « less
  7. Abstract The discovery and characterization of extrasolar planets using radial velocity (RV) measurements is limited by noise sources from the surfaces of host stars. Current techniques to suppress stellar magnetic activity rely on decorrelation using an activity indicator (e.g., strength of the Ca ii lines, width of the cross-correlation function, broadband photometry) or measurement of the RVs using only a subset of spectral lines that have been shown to be insensitive to activity. Here, we combine the above techniques by constructing a high-signal-to-noise activity indicator, the depth metric  ( t ) , from the most activity-sensitive spectral lines using the “line-by-line” method of Dumusque (2018). Analogous to photometric decorrelation of RVs or Gaussian progress regression modeling of activity indices, time series modeling of  ( t ) reduces the amplitude of magnetic activity in RV measurements; in an α CenB RV time series from HARPS, the RV rms was reduced from 2.67 to 1.02 m s −1 .  ( t ) modeling enabled us to characterize injected planetary signals as small as 1 m s −1 . In terms of noise reduction and injected signal recovery,  ( t ) modeling outperforms activity mitigation via the selection of activity-insensitive spectral lines. For Sun-like stars with activity signals on the m s −1 level, the depth metric independently tracks rotationally modulated and multiyear stellar activity with a level of quality similar to that of the FWHM of the CCF and log R HK ′ . The depth metric and its elaborations will be a powerful tool in the mitigation of stellar magnetic activity, particularly as a means of connecting stellar activity to physical processes within host stars. 
    more » « less
  8. Abstract

    The extreme environments of ultra-short-period planets (USPs) make excellent laboratories to study how exoplanets obtain, lose, retain, and/or regain gaseous atmospheres. We present the confirmation and characterization of the USP TOI-1347 b, a 1.8 ± 0.1Rplanet on a 0.85 day orbit that was detected with photometry from the TESS mission. We measured radial velocities of the TOI-1347 system using Keck/HIRES and HARPS-N and found the USP to be unusually massive at 11.1 ± 1.2M. The measured mass and radius of TOI-1347 b imply an Earth-like bulk composition. A thin H/He envelope (>0.01% by mass) can be ruled out at high confidence. The system is between 1 and 1.8 Gyr old; therefore, intensive photoevaporation should have concluded. We detected a tentative phase-curve variation (3σ) and a secondary eclipse (2σ) in TESS photometry, which, if confirmed, could indicate the presence of a high-mean-molecular-weight atmosphere. We recommend additional optical and infrared observations to confirm the presence of an atmosphere and investigate its composition.

     
    more » « less
  9. Abstract

    We present a catalog of stellar companions to host stars of Transiting Exoplanet Survey Satellite Objects of Interest (TOIs) identified from a marginalized likelihood ratio test that incorporates astrometric data from the Gaia Early Data Release 3 catalog (EDR3). The likelihood ratio is computed using a probabilistic model that incorporates parallax and proper-motion covariances and marginalizes the distances and 3D velocities of stars in order to identify comoving stellar pairs. We find 172 comoving companions to 170 non-false-positive TOI hosts, consisting of 168 systems with two stars and 2 systems with three stars. Among the 170 TOI hosts, 54 harbor confirmed planets that span a wide range of system architectures. We conduct an investigation of the mutual inclinations between the stellar companion and planetary orbits using Gaia EDR3, which is possible because transiting exoplanets must orbit within the line of sight; thus, stellar companion kinematics can constrain mutual inclinations. While the statistical significance of the current sample is weak, we find that7320+14%of systems with Kepler-like architectures (RP≤ 4Randa< 1 au) appear to favor a nonisotropic orientation between the planetary and companion orbits with a typical mutual inclinationαof 35° ± 24°. In contrast,6535+20% of systems with close-in giants (P< 10 days andRP> 4R) favor a perpendicular geometry (α= 89° ± 21°) between the planet and companion. Moreover, the close-in giants with large stellar obliquities (planet–host misalignment) are also those that favor significant planet–companion misalignment.

     
    more » « less