skip to main content


Search for: All records

Creators/Authors contains: "Howard, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Mid-latitude jet streaks are known to produce conditions broadly supportive of tornado outbreaks, including forcing for large-scale ascent, increased wind shear, and decreased static stability. Although many processes may initiate a jet streak, we focus here on the development of jet maxima by interactions between the polar jet and tropopause polar vortices (TPVs). Originating from the Arctic, TPVs are long-lived circulations on the tropopause, which can be advected into the mid-latitudes. We hypothesize that when these vortices interact with the jet, they may contribute supplemental forcing for ascent and shear to tornado outbreaks, assuming other environmental conditions supportive of tornado development exist. Using a case set of significant tornado outbreak days from three states—Oklahoma, Illinois, and Alabama—we show that a vortex-jet streak structure is present (within 1250 km) in around two-thirds of tornado outbreaks. These vortices are commonly Arctic in origin (i.e., are TPVs) and are advected through a consistent path of entry into the mid-latitudes in the week before the outbreak, moving across the Northern Pacific and into the Gulf of Alaska before turning equatorward along the North American coast. These vortices are shown to be more intense and longer-lived than average. We further demonstrate that statistically significant patterns of wind shear, quasi-geostrophic forcing for ascent, and low static stability are present over the outbreak regions on the synoptic scale. In addition, we find that TPVs associated with tornadic events occur most often in the spring and are associated with greater low-level moisture when compared to non-tornadic TPV cases. 
    more » « less
  2. null (Ed.)
    Abstract The maximum upward vertical velocity at the leading edge of a density current is commonly <10 m s−1. Studies of the vertical velocity, however, are relatively few, in part owing to the dearth of high-spatiotemporal-resolution observations. During the Plains Elevated Convection At Night (PECAN) field project, a mobile Doppler lidar measured a maximum vertical velocity of 13 m s−1 at the leading edge of a density current created by a mesoscale convective system during the night of 15 July 2015. Two other vertically pointing instruments recorded 8 m s−1 vertical velocities at the leading edge of the density current on the same night. This study describes the structure of the density current and attempts to estimate the maximum vertical velocity at their leading edges using the following properties: the density current depth, the slope of its head, and its perturbation potential temperature. The method is then be applied to estimate the maximum vertical velocity at the leading edge of density currents using idealized numerical simulations conducted in neutral and stable atmospheres with resting base states and in neutral and stable atmospheres with vertical wind shear. After testing this method on idealized simulations, this method is then used to estimate the vertical velocity at the leading edge of density currents documented in several previous studies. It was found that the maximum vertical velocity can be estimated to within 10%–15% of the observed or simulated maximum vertical velocity and indirectly accounts for parameters including environmental wind shear and static stability. 
    more » « less
  3. null (Ed.)
    Abstract On 24 May 2016, a supercell that produced 13 tornadoes near Dodge City, Kansas, was documented by a rapid-scanning, X-band, polarimetric, Doppler radar (RaXPol). The anomalous nature of this storm, particularly the significant deviations in storm motion from the mean flow and number of tornadoes produced, is examined and discussed. RaXPol observed nine tornadoes with peak radar-derived intensities (Δ V max ) and durations ranging from weak (~60 m s −1 ) and short lived (<30 s) to intense (>150 m s −1 ) and long lived (>25 min). This case builds on previous studies of tornado debris signature (TDS) evolution with continuous near-surface sampling of multiple strong tornadoes. The TDS sizes increased as the tornadoes intensified but lacked direct correspondence to tornado intensity otherwise. The most significant growth of the TDS in both cases was linked to two substantial rear-flank-downdraft surges and subsequent debris ejections, resulting in growth of the TDSs to more than 3 times their original sizes. The TDS was also observed to continue its growth as the tornadoes decayed and lofted debris fell back to the surface. The TDS size and polarimetric composition were also found to correspond closely to the underlying surface cover, which resulted in reductions in Z DR in wheat fields and growth of the TDS in terraced dirt fields as a result of ground scouring. TDS growth with respect to tornado vortex tilt is also discussed. 
    more » « less
  4. null (Ed.)
    Abstract Tornadic supercells moved across parts of Oklahoma on the afternoon and evening of 9 May 2016. One such supercell, while producing a long-lived tornado, was observed by nearby WSR-88D radars to contain a strong anticyclonic velocity couplet on the lowest elevation angle. This couplet was located in a very atypical position relative to the ongoing cyclonic tornado and to the supercell’s updraft. A storm survey team identified damage near where this couplet occurred, and, in the absence of evidence refuting otherwise, the damage was thought to have been produced by an anticyclonic tornado. However, such a tornado was not seen in near-ground, high-resolution radar data from a much closer, rapid-scan, mobile radar. Rather, an elongated velocity couplet was observed only at higher elevation angles at altitudes similar to those at which the WSR-88D radars observed the strong couplet. This paper examines observations from two WSR-88D radars and a mobile radar from which it is argued that the anticyclonic couplet (and a similar one ~10 min later) were actually quasi-horizontal vortices centered ~1–1.5 km AGL. The benefits of having data from a radar much closer to the convective storm being sampled (e.g., better spatial resolution and near-ground data coverage) and providing more rapid volume updates are readily apparent. An analysis of these additional radar data provides strong, but not irrefutable, evidence that the anticyclonic tornado that may be inferred from WSR-88D data did not exist; consequently, upon discussions with the National Weather Service, it was not included in Storm Data. 
    more » « less
  5. null (Ed.)
    Abstract This study presents an investigation into relationships among topographic elevation, surface land cover, and tornado intensity using rapid scan, mobile Doppler radar observations of four tornadoes from the U.S. Central Plains. High spatiotemporal resolution observations of tornadic vortex signatures from the radar’s lowest elevation angle data (in most cases ranging from ~100 to 350 m above ground level) are coupled with digital elevation model (DEM) and 2011 National Land Cover Database (NLCD) data using a geographic information system (GIS). The relationships between 1) tornado intensity and topographic elevation or surface roughness and 2) changes in tornado intensity and changes in topographic elevation or surface roughness are investigated qualitatively, and statistical relationships are quantified and analyzed using a bootstrap permutation method for individual case studies and all cases collectively. Results suggest that there are statistically significant relationships for individual cases, but the relationships defy generalization and are different on a case-by-case basis, which may imply that they are coincidental, indicating a null correlation. 
    more » « less
  6. A detailed damage survey is combined with high-resolution mobile, rapid-scanning X-band polarimetric radar data collected on the Shawnee, Oklahoma, tornado of 19 May 2013. The focus of this study is the radar data collected during a period when the tornado was producing damage rated EF3. Vertical profiles of mobile radar data, centered on the tornado, revealed that the radar reflectivity was approximately uniform with height and increased in magnitude as more debris was lofted. There was a large decrease in both the cross-correlation coefficient ( ρ hv ) and differential radar reflectivity ( Z DR ) immediately after the tornado exited the damaged area rated EF3. Low ρ hv and Z DR occurred near the surface where debris loading was the greatest. The 10th percentile of ρ hv decreased markedly after large amounts of debris were lofted after the tornado leveled a number of structures. Subsequently, ρ hv quickly recovered to higher values. This recovery suggests that the largest debris had been centrifuged or fallen out whereas light debris remained or continued to be lofted. Range–height profiles of the dual-Doppler analyses that were azimuthally averaged around the tornado revealed a zone of maximum radial convergence at a smaller radius relative to the leading edge of lofted debris. Low-level inflow into the tornado encountering a positive bias in the tornado-relative radial velocities could explain the existence of the zone. The vertical structure of the convergence zone was shown for the first time. 
    more » « less
  7. null (Ed.)
    Abstract Rapid-scan polarimetric data analysis of the dissipation of a likely violent supercell tornado that struck near Sulphur, Oklahoma, on 9 May 2016 is presented. The Rapid X-band Polarimetric Radar was used to obtain data of the tornado at the end of its mature phase and during its entire dissipation phase. The analysis is presented in two parts: dissipation characteristics of the tornadic vortex signature (TVS) associated with the tornado and storm-scale polarimetric features that may be related to processes contributing to tornado dissipation. The TVS exhibited near-surface radial velocities exceeding 100 m s−1 multiple times at the end of its mature phase, and then underwent a two-phased dissipation. Initially, decreases in near-surface intensity occurred rapidly over a ~5-min period followed by a slower decline in intensity that lasted an additional ~12 min. The dissipation of the TVS in time and height in the lowest 2 km above radar level and oscillatory storm-relative motion of the TVS also are discussed. Using polarimetric data, a well-defined low reflectivity ribbon is investigated for its vertical development, evolution, and relationship to the large tornadic debris signature (TDS) collocated with the TVS. The progression of the TDS during dissipation also is discussed with a focus on the presence of several bands of reduced copolar correlation coefficient that extend away from the main TDS and the eventual erosion of the TDS as the tornado dissipated. Finally, TVS and polarimetric data are combined to argue for the importance of a possible internal rear-flank downdraft momentum surge in contributing to the initial rapid dissipation of the tornado. 
    more » « less