skip to main content


Search for: All records

Creators/Authors contains: "Hu, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We explore the representation of the Atlantic Meridional Overturning Circulation (AMOC) in 27 models from the CMIP6 multimodel ensemble. Comparison with RAPID and SAMBA observations suggests that the ensemble mean represents the AMOC strength and vertical profile reasonably well. Linear trends over the entire historical period (1850–2014) are generally neutral, but many models exhibit an AMOC peak around the 1980s. Ensemble mean AMOC decline in future (SSP) scenarios is stronger in CMIP6 than CMIP5 models. In fact, AMOC decline in CMIP6 is surprisingly insensitive to the scenario at least up to 2060. We find an emergent relationship among a majority of models between AMOC strength and 21st century AMOC decline. Constraining this relationship with RAPID observations suggests that the AMOC might decline between 6 and 8 Sv (34–45%) by 2100. A smaller group of models projects much less AMOC weakening of only up to 30%.

     
    more » « less
  2. Abstract

    The notion that the Atlantic Meridional Overturning Circulation (AMOC) can have more than one stable equilibrium emerged in the 1980s as a powerful hypothesis to explain rapid climate variability during the Pleistocene. Ever since, the idea that a temporary perturbation of the AMOC—or a permanent change in its forcing—could trigger an irreversible collapse has remained a reason for concern. Here we review literature on the equilibrium stability of the AMOC and present a synthesis that puts our understanding of past and future AMOC behavior in a unifying framework. This framework is based on concepts from Dynamical Systems Theory, which has proven to be an important tool in interpreting a wide range of model behavior. We conclude that it cannot be ruled out that the AMOC in our current climate is in, or close to, a regime of multiple equilibria. But there is considerable uncertainty in the location of stability thresholds with respect to our current climate state, so we have no credible indications of where our present‐day AMOC is located with respect to thresholds. We conclude by identifying gaps in our knowledge and proposing possible ways forward to address these gaps.

     
    more » « less