skip to main content


Search for: All records

Creators/Authors contains: "Hu, Beili"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In order for optical cavities to enable strong light-matter interactions for quantum metrology, networking, and scalability in quantum computing systems, their mirrors must have minimal losses. However, high-finesse dielectric cavity mirrors can degrade in ultra-high vacuum (UHV), increasing the challenges of upgrading to cavity-coupled quantum systems. We observe the optical degradation of high-finesse dielectric optical cavity mirrors after high-temperature UHV bake in the form of a substantial increase in surface roughness. We provide an explanation of the degradation through atomic force microscopy (AFM), X-ray fluorescence (XRF), selective wet etching, and optical measurements. We find the degradation is explained by oxygen reduction in Ta2O5followed by growth of tantalum sub-oxide defects with height to width aspect ratios near ten. We discuss the dependence of mirror loss on surface roughness and finally give recommendations to avoid degradation to allow for quick adoption of cavity-coupled systems.

     
    more » « less
  2. We report a high-finesse bow-tie cavity designed for atomic physics experiments with Rydberg atom arrays. The cavity has a finesse of 51,000 and a waist of 7.1μm at the cesium D2 line (852 nm). With these parameters, the cavity is expected to induce strong coupling between a single atom and a single photon, corresponding to a cooperativity per traveling mode of 35 at the cavity waist. To trap and image atoms, the cavity setup utilizes two in-vacuum aspheric lenses with a numerical aperture (NA) of 0.35 and is capable of housingNA = 0.5 microscope objectives. In addition, the large atom-mirror distance (≳<#comment/>1.5cm) provides good optical access and minimizes stray electric fields at the position of the atoms. This cavity setup can operate in tandem with a Rydberg array platform, creating a fully connected system for quantum simulation and computation.

     
    more » « less