skip to main content


Search for: All records

Creators/Authors contains: "Hu, Jianjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Existing machine learning potentials for predicting phonon properties of crystals are typically limited on a material-to-material basis, primarily due to the exponential scaling of model complexity with the number of atomic species. We address this bottleneck with the developed Elemental Spatial Density Neural Network Force Field, namely Elemental-SDNNFF. The effectiveness and precision of our Elemental-SDNNFF approach are demonstrated on 11,866 full, half, and quaternary Heusler structures spanning 55 elements in the periodic table by prediction of complete phonon properties. Self-improvement schemes including active learning and data augmentation techniques provide an abundant 9.4 million atomic data for training. Deep insight into predicted ultralow lattice thermal conductivity (<1 Wm −1  K −1 ) of 774 Heusler structures is gained by p–d orbital hybridization analysis. Additionally, a class of two-band charge-2 Weyl points, referred to as “double Weyl points”, are found in 68% and 87% of 1662 half and 1550 quaternary Heuslers, respectively. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. Data driven generative deep learning models have recently emerged as one of the most promising approaches for new materials discovery. While generator models can generate millions of candidates, it is critical to train fast and accurate machine learning models to filter out stable, synthesizable materials with the desired properties. However, such efforts to build supervised regression or classification screening models have been severely hindered by the lack of unstable or unsynthesizable samples, which usually are not collected and deposited in materials databases such as ICSD and Materials Project (MP). At the same time, there is a significant amount of unlabelled data available in these databases. Here we propose a semi-supervised deep neural network (TSDNN) model for high-performance formation energy and synthesizability prediction, which is achieved via its unique teacher-student dual network architecture and its effective exploitation of the large amount of unlabeled data. For formation energy based stability screening, our semi-supervised classifier achieves an absolute 10.3% accuracy improvement compared to the baseline CGCNN regression model. For synthesizability prediction, our model significantly increases the baseline PU learning's true positive rate from 87.9% to 92.9% using 1/49 model parameters. To further prove the effectiveness of our models, we combined our TSDNN-energy and TSDNN-synthesizability models with our CubicGAN generator to discover novel stable cubic structures. Out of the 1000 recommended candidate samples by our models, 512 of them have negative formation energies as validated by our DFT formation energy calculations. Our experimental results show that our semi-supervised deep neural networks can significantly improve the screening accuracy in large-scale generative materials design. Our source code can be accessed at https://git/hub.com/usccolumbia/tsdnn. 
    more » « less
  4. Abstract Driven by the big data science, material informatics has attracted enormous research interests recently along with many recognized achievements. To acquire knowledge of materials by previous experience, both feature descriptors and databases are essential for training machine learning (ML) models with high accuracy. In this regard, the electronic charge density ρ ( r ), which in principle determines the properties of materials at their ground state, can be considered as one of the most appropriate descriptors. However, the systematic electronic charge density ρ ( r ) database of inorganic materials is still in its infancy due to the difficulties in collecting raw data in experiment and the expensive first-principles based computational cost in theory. Herein, a real space electronic charge density ρ ( r ) database of 17,418 cubic inorganic materials is constructed by performing high-throughput density functional theory calculations. The displayed ρ ( r ) patterns show good agreements with those reported in previous studies, which validates our computations. Further statistical analysis reveals that it possesses abundant and diverse data, which could accelerate ρ ( r ) related machine learning studies. Moreover, the electronic charge density database will also assists chemical bonding identifications and promotes new crystal discovery in experiments. 
    more » « less
  5. Two‐dimensional (2D) materials offer great potential in various fields like superconductivity, quantum systems, and topological materials. However, designing them systematically remains challenging due to the limited pool of fewer than 100 experimentally synthesized 2D materials. Recent advancements in deep learning, data mining, and density functional theory (DFT) calculations have paved the way for exploring new 2D material candidates. Herein, a generative material design pipeline known as the material transformer generator (MTG) is proposed. MTG leverages two distinct 2D material composition generators, both trained using self‐learning neural language models rooted in transformers, with and without transfer learning. These models generate numerous potential 2D compositions, which are plugged into established templates for known 2D materials to predict their crystal structures. To ensure stability, DFT computations assess their thermodynamic stability based on energy‐above‐hull and formation energy metrics. MTG has found four new DFT‐validated stable 2D materials: NiCl4, IrSBr, CuBr3, and CoBrCl, all with zero energy‐above‐hull values that indicate thermodynamic stability. Additionally, GaBrO and NbBrCl3are found with energy‐above‐hull values below 0.05 eV. CuBr3and GaBrO exhibit dynamic stability, confirmed by phonon dispersion analysis. In summary, the MTG pipeline shows significant potential for discovering new 2D and functional materials.

     
    more » « less
  6. Abstract

    Discovering new materials is a challenging task in materials science crucial to the progress of human society. Conventional approaches based on experiments and simulations are labor-intensive or costly with success heavily depending on experts’ heuristic knowledge. Here, we propose a deep learning based Physics Guided Crystal Generative Model (PGCGM) for efficient crystal material design with high structural diversity and symmetry. Our model increases the generation validity by more than 700% compared to FTCP, one of the latest structure generators and by more than 45% compared to our previous CubicGAN model. Density Functional Theory (DFT) calculations are used to validate the generated structures with 1869 materials out of 2000 are successfully optimized and deposited into the Carolina Materials Databasewww.carolinamatdb.org, of which 39.6% have negative formation energy and 5.3% have energy-above-hull less than 0.25 eV/atom, indicating their thermodynamic stability and potential synthesizability.

     
    more » « less
  7. Abstract Pre-trained transformer language models (LMs) on large unlabeled corpus have produced state-of-the-art results in natural language processing, organic molecule design, and protein sequence generation. However, no such models have been applied to learn the composition patterns for the generative design of material compositions. Here we train a series of seven modern transformer models (GPT, GPT-2, GPT-Neo, GPT-J, BLMM, BART, and RoBERTa) for materials design using the expanded formulas of the ICSD, OQMD, and Materials Projects databases. Six different datasets with/out non-charge-neutral or EB samples are used to benchmark the generative design performances and uncover the biases of modern transformer models for the generative design of materials compositions. Our experiments show that the materials transformers based on causal LMs can generate chemically valid material compositions with as high as 97.61% to be charge neutral and 91.22% to be electronegativity balanced, which has more than six times higher enrichment compared to the baseline pseudo-random sampling algorithm. Our LMs also demonstrate high generation novelty and their potential in new materials discovery is proved by their capability to recover the leave-out materials. We also find that the properties of the generated compositions can be tailored by training the models with selected training sets such as high-bandgap samples. Our experiments also show that different models each have their own preference in terms of the properties of the generated samples and their running time complexity varies a lot. We have applied our materials transformers to discover a set of new materials as validated using density functional theory calculations. All our trained materials transformer models and code can be accessed freely at http://www.github.com/usccolumbia/MTransformer . 
    more » « less
  8. The success of graphene created a new era in materials science, especially for two-dimensional (2D) materials. 2D single-crystal carbon nitride (C 3 N) is the first and only crystalline, hole-free, single-layer carbon nitride and its controlled large-scale synthesis has recently attracted tremendous interest in thermal transport. Here, we performed a comparative study of thermal transport between monolayer C 3 N and the parent graphene, and focused on the effect of temperature and strain on the thermal conductivity ( κ ) of C 3 N, by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The κ of C 3 N shows an anomalous temperature dependence, and the κ of C 3 N at high temperatures is larger than the expected value following the common trend of κ ∼ 1/ T . Moreover, the κ of C 3 N is found to be increased by applying a bilateral tensile strain, despite its similar planar honeycomb structure to graphene. The underlying mechanism is revealed by providing direct evidence for the interaction between lone-pair N-s electrons and bonding electrons from C atoms in C 3 N based on the analysis of orbital-projected electronic structures and electron localization function (ELF). Our research not only conduct a comprehensive study on the thermal transport in graphene-like C 3 N, but also reveal the physical origin of its anomalous properties, which would have significant implications on the future studies of nanoscale thermal transport. 
    more » « less