skip to main content


Search for: All records

Creators/Authors contains: "Hu, Ruimeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    Large-scale dynamics of the oceans and the atmosphere are governed by primitive equations (PEs). Due to the nonlinearity and nonlocality, the numerical study of the PEs is generally challenging. Neural networks have been shown to be a promising machine learning tool to tackle this challenge. In this work, we employ physics-informed neural networks (PINNs) to approximate the solutions to the PEs and study the error estimates. We first establish the higher-order regularity for the global solutions to the PEs with either full viscosity and diffusivity, or with only the horizontal ones. Such a result for the case with only the horizontal ones is new and required in the analysis under the PINNs framework. Then we prove the existence of two-layer tanh PINNs of which the corresponding training error can be arbitrarily small by taking the width of PINNs to be sufficiently wide, and the error between the true solution and its approximation can be arbitrarily small provided that the training error is small enough and the sample set is large enough. In particular, all the estimates area priori, and our analysis includes higher-order (in spatial Sobolev norm) error estimates. Numerical results on prototype systems are presented to further illustrate the advantage of using the$$H^s$$Hsnorm during the training.

     
    more » « less
  3. Abstract We analyze the systemic risk for disjoint and overlapping groups of financial institutions by proposing new models with realistic game features.Specifically, we generalize the systemic risk measure proposed in[F. Biagini, J.-P. Fouque, M. Frittelli and T. Meyer-Brandis, On fairness of systemic risk measures, Finance Stoch. 24 (2020), 2, 513–564]by allowing individual banks to choose their preferred groups instead of being assigned to certain groups.We introduce the concept of Nash equilibrium for these new models, and analyze the optimal solution under Gaussian distribution of the risk factor.We also provide an explicit solution for the risk allocation of the individual banks and study the existence and uniqueness of Nash equilibrium both theoretically and numerically.The developed numerical algorithm can simulate scenarios of equilibrium, and we apply it to study the banking structure with real data and show the validity of the proposed model. 
    more » « less
  4. Abstract

    We study the stochastic effect on the three-dimensional inviscid primitive equations (PEs, also called the hydrostatic Euler equations). Specifically, we consider a larger class of noises than multiplicative noises, and work in the analytic function space due to the ill-posedness in Sobolev spaces of PEs without horizontal viscosity. Under proper conditions, we prove the local existence of martingale solutions and pathwise uniqueness. By adding vertical viscosity,i.e., considering the hydrostatic Navier-Stokes equations, we can relax the restriction on initial conditions to be only analytic in the horizontal variables with Sobolev regularity in the vertical variable, and allow the transport noise in the vertical direction. We establish the local existence of martingale solutions and pathwise uniqueness, and show that the solutions become analytic in the vertical variable instantaneously as$$t>0$$t>0and the vertical analytic radius increases as long as the solutions exist.

     
    more » « less
  5. Stochastic differential games have been used extensively to model agents' competitions in finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed machine learning algorithm, deep fictitious play, provides a novel and efficient tool for finding Markovian Nash equilibrium of large \begin{document}$ N $\end{document}-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, pages 221-245, PMLR, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into \begin{document}$ N $\end{document} sub-optimization problems, and identifies each player's optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an \begin{document}$ \epsilon $\end{document}-Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems.

     
    more » « less
  6. Jin, Shi (Ed.)
    In this paper, we apply the idea of fictitious play to design deep neural networks (DNNs), and develop deep learning theory and algorithms for computing the Nash equilibrium of asymmetric N-player non-zero-sum stochastic differential games, for which we refer as deep fictitious play, a multi-stage learning process. Specifically at each stage, we propose the strategy of letting individual player optimize her own payoff subject to the other players’ previous actions, equivalent to solving N decoupled stochastic control optimization problems, which are approximated by DNNs. Therefore, the fictitious play strategy leads to a structure consisting of N DNNs, which only communicate at the end of each stage. The resulting deep learning algorithm based on fictitious play is scalable, parallel and model-free, i.e., using GPU parallelization, it can be applied to any N-player stochastic differential game with different symmetries and heterogeneities (e.g., existence of major players). We illustrate the performance of the deep learning algorithm by comparing to the closed-form solution of the linear quadratic game. Moreover, we prove the convergence of fictitious play under appropriate assumptions, and verify that the convergent limit forms an open-loop Nash equilibrium. We also discuss the extensions to other strategies designed upon fictitious play and closed-loop Nash equilibrium in the end. 
    more » « less