skip to main content


Search for: All records

Creators/Authors contains: "Hu, Zhongqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Controlling magnetization dynamics is imperative for developing ultrafast spintronics and tunable microwave devices. However, the previous research has demonstrated limited electric-field modulation of the effective magnetic damping, a parameter that governs the magnetization dynamics. Here, we propose an approach to manipulate the damping by using the large damping enhancement induced by the two-magnon scattering and a nonlocal spin relaxation process in which spin currents are resonantly transported from antiferromagnetic domains to ferromagnetic matrix in a mixed-phased metallic alloy FeRh. This damping enhancement in FeRh is sensitive to its fraction of antiferromagnetic and ferromagnetic phases, which can be dynamically tuned by electric fields through a strain-mediated magnetoelectric coupling. In a heterostructure of FeRh and piezoelectric PMN-PT, we demonstrated a more than 120% modulation of the effective damping by electric fields during the antiferromagnetic-to-ferromagnetic phase transition. Our results demonstrate an efficient approach to controlling the magnetization dynamics, thus enabling low-power tunable electronics. 
    more » « less
  2. Abstract

    Magnetization dynamics induced by spin–orbit torques in a heavy‐metal/ferromagnet can potentially be used to design low‐power spintronics and logic devices. Recent computations have suggested that a strain‐mediated spin–orbit torque (SOT) switching in magnetoelectric (ME) heterostructures is fast, energy‐efficient, and permits a deterministic 180° magnetization switching. However, its experimental realization has remained elusive. Here, the coexistence of the strain‐mediated ME coupling and the SOT in a CoFeB/Pt/ferroelectric hybrid structure is shown experimentally. The voltage‐induced strain only slightly modifies the efficiency of SOT generation, but it gives rise to an effective magnetic anisotropy and rotates the magnetic easy axis which eliminates the incubation delay in current‐induced magnetization switching. The phase field simulations show that the electric‐field‐induced effective magnetic anisotropy field can reduce the switching time approximately by a factor of three for SOT in‐plane magnetization switching. It is anticipated that such strain‐mediated ME‐SOT hybrid structures may enable field‐free, ultrafast magnetization switching.

     
    more » « less