skip to main content


Search for: All records

Creators/Authors contains: "Huang, Q."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tin (Sn) films are electrodeposited on Au seed layers for the investigation of superconductivity. The effects of the presence of suppressing additives in electrolyte, the thickness of Sn films, and the room temperature aging of deposited Sn films on the superconducting transition behavior are systematically studied. In addition, the crystallographic structure of electrodeposited Sn and its evolution along with aging time are characterized and are discussed in conjunction with the superconductivity behavior. The current work represents an important step towards the processing of technologically viable superconducting devices. 
    more » « less
  2. Free, publicly-accessible full text available April 1, 2024
  3. A systematic electrochemical study is carried out on electrolytes with superhigh concentrations of fructose. The effect of fructose concentration on the viscosity and conductivity of electrolyte are determined and analyzed using Walden rule and the theory of rate process. The diffusion rates of proton and cupric cation are calculated from the peak current in cyclic voltammogram on stationary electrode and the limiting current on rotating electrodes. Raman spectroscopy is used to characterize the hydrogen bond network in water and the effect of fructose concentration on such network. Rhenium deposition with different fructose concentrations is studied on rotating disc electrodes. X-ray fluorescence, X-ray diffraction, and four point probe measurements at cryogenic temperature are used to study the deposition rate, crystallographic structure, and superconductivity of film, respectively.

     
    more » « less
  4. We constructed the magnetic field-temperature phase diagrams of new quasi-two-dimensional isosceles triangular lattice antiferromagnets (TLAF) Ca 3 MNb 2 O 9 (M=Co, Ni) from dc and ac magnetic susceptibilities, specific heat, dielectric constant, and electric polarization measurements on single crystalline samples. Ca 3 CoNb 2 O 9 with effective spin-1/2 Co 2+ ions undergoes a two-step antiferromagnetic phase transition at T N1 = 1.3 K and T N2 = 1.5 K and enters a stripe ordered state at zero magnetic field. With increasing field, successive magnetic phase transitions, reminiscent of the up-up-down ( uud ) and the oblique phases, are observed. The dielectric constant of Ca 3 CoNb 2 O 9 shows anomalies related to the magnetic phase transitions, but clear evidence of ferroelectricity is absent. Meanwhile, Ca 3 NiNb 2 O 9 with spin-1 Ni 2+ ions also shows a two-step antiferromagnetic transition at T N1 = 3.8 K and T N2 = 4.2 K at zero field. For Ca 3 NiNb 2 O 9 , the electric polarization in the magnetic ordered phases was clearly observed from the pyroelectric current measurements, which indicates its coexistence of magnetic ordering and ferroelectricity. 
    more » « less
  5. Abstract With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba 3 CoSb 2 O 9 , a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba 2.87 Sr 0.13 CoSb 2 O 9 with Sr doping on non-magnetic Ba 2+ ion sites. The results show that Ba 2.87 Sr 0.13 CoSb 2 O 9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field with reduced ordered moment as 1.24 μ B /Co; (iii) a series of spin state transitions for both H ∥ ab -plane and H ∥ c -axis. For H ∥ ab -plane, the magnetization plateau feature related to the up–up–down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba 3 CoSb 2 O 9 , which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions. 
    more » « less