skip to main content


Search for: All records

Creators/Authors contains: "Hwang, Harold Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 13, 2024
  2. Abstract

    Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of −1) to a two-dimensional, tetratic lattice of merons (with topological charge of −1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO3)16/(SrTiO3)16]8membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.

     
    more » « less
  3. As a real-space technique, atomic-resolution STEM imaging contains both amplitude and geometric phase information about structural order in materials, with the latter encoding important information about local variations and heterogeneities present in crystalline lattices. Such phase information can be extracted using geometric phase analysis (GPA), a method which has generally focused on spatially mapping elastic strain. Here we demonstrate an alternative phase demodulation technique and its application to reveal complex structural phenomena in correlated quantum materials. As with other methods of image phase analysis, the phase lock-in approach can be implemented to extract detailed information about structural order and disorder, including dislocations and compound defects in crystals. Extending the application of this phase analysis to Fourier components that encode periodic modulations of the crystalline lattice, such as superlattice or secondary frequency peaks, we extract the behavior of multiple distinct order parameters within the same image, yielding insights into not only the crystalline heterogeneity but also subtle emergent order parameters such as antipolar displacements. When applied to atomic-resolution images spanning large (~0.5 × 0.5 μ m 2 ) fields of view, this approach enables vivid visualizations of the spatial interplay between various structural orders in novel materials. 
    more » « less
  4. Abstract

    Lithium intercalation of MoS2is generally believed to introduce a phase transition from H phase (semiconducting) to T phase (metallic). However, during the intercalation process, a spatially sharp boundary is usually formed between the fully intercalated T phase MoS2and non-intercalated H phase MoS2. The intermediate state,i.e., lightly intercalated H phase MoS2without a phase transition, is difficult to investigate by optical-microscope-based spectroscopy due to the narrow size. Here, we report the stabilization of the intermediate state across the whole flake of twisted bilayer MoS2. The twisted bilayer system allows the lithium to intercalate from the top surface and enables fast Li-ion diffusion by the reduced interlayer interaction. TheE2gRaman mode of the intermediate state shows a peak splitting behavior. Our simulation results indicate that the intermediate state is stabilized by lithium-induced symmetry breaking of the H phase MoS2. Our results provide an insight into the non-uniform intercalation during battery charging and discharging, and also open a new opportunity to modulate the properties of twisted 2D systems with guest species doping in the Moiré structures.

     
    more » « less
  5. Abstract

    The self-organization of strongly interacting electrons into superlattice structures underlies the properties of many quantum materials. How these electrons arrange within the superlattice dictates what symmetries are broken and what ground states are stabilized. Here we show that cryogenic scanning transmission electron microscopy (cryo-STEM) enables direct mapping of local symmetries and order at the intra-unit-cell level in the model charge-ordered system Nd1/2Sr1/2MnO3. In addition to imaging the prototypical site-centered charge order, we discover the nanoscale coexistence of an exotic intermediate state which mixes site and bond order and breaks inversion symmetry. We further show that nonlinear coupling of distinct lattice modes controls the selection between competing ground states. The results demonstrate the importance of lattice coupling for understanding and manipulating the character of electronic self-organization and that cryo-STEM can reveal local order in strongly correlated systems at the atomic scale.

     
    more » « less
  6. null (Ed.)