skip to main content


Search for: All records

Creators/Authors contains: "Hyde, T. W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fine-grained dust rims (FGRs) surrounding chondrules in carbonaceous chondrites encode important information about early processes in the solar nebula. Here, we investigate the effect of the nebular environment on FGR porosity, dust size distribution, and grain alignment, comparing the results for rims comprised of ellipsoidal and spherical grains. We conduct numerical simulations in which FGRs grow by collisions between dust particles and chondrules in both neutral and ionized turbulent gas. The resultant rim morphology is related to the ratioϵof the electrostatic potential energy at the collision point to the relative kinetic energy between colliding particles. In general, largeϵleads to a large rim porosity, large rim grain size, and low growth rate. Dust rims comprised of ellipsoidal monomers initially grow faster in thickness than rims comprised of spherical monomers, due to their higher porosity. As the rims grow and obtain a greater electrostatic potential, repulsion becomes dominant, and this effect is reversed. Grain size coarsening toward the outer regions of the rims is observed for low- and high-ϵregimes, and is more pronounced in the ellipsoidal case, while for the medium-ϵregime, small monomers tend to be captured in the middle of the rims. In neutral environments, ellipsoidal grains have random orientations within the rim, while in charged environments ellipsoidal grains tend to align with maximum axial alignment forϵ= 0.15. The characterization of these FGR features provides a means to relate laboratory measurements of chondrite samples to the formation environment of the parent bodies.

     
    more » « less
  2. USRA (Ed.)
    In this research, we present a study on the manner in which induced longitudinal (axial) and lateral (radial) shear flows differ experimentally when stimulated in a three-dimensional (3D) complex (dusty) plasma produced in the PlasmaKristal-4 (PK4- BU) at Baylor University. 
    more » « less
  3. null (Ed.)