skip to main content


Search for: All records

Creators/Authors contains: "Isaacson, Howard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present high-precision radial velocity observations of Gaia BH1, the nearest known black hole (BH). The system contains a solar-type G star orbiting a massive dark companion, which could be either a single BH or an inner BH + BH binary. A BH + BH binary is expected in some models where Gaia BH1 formed as a hierarchical triple, which is attractive because they avoid many of the difficulties associated with forming the system through isolated binary evolution. Our observations test the inner binary scenario. We have measured 115 precise RVs of the G star, including 40 from ESPRESSO with a precision of 3–5 m s−1, and 75 from other instruments with a typical precision of 30–100 m s−1. Our observations span 2.33 orbits of the G star and are concentrated near a periastron passage, when perturbations due to an inner binary would be largest. The RVs are well-fit by a Keplerian two-body orbit and show no convincing evidence of an inner binary. UsingREBOUNDsimulations of hierarchical triples with a range of inner periods, mass ratios, eccentricities, and orientations, we show that plausible inner binaries with periodsPinner≳ 1.5 days would have produced larger deviations from a Keplerian orbit than observed. Binaries withPinner≲ 1.5 days are consistent with the data, but these would merge within a Hubble time and would thus imply fine-tuning. We present updated parameters of Gaia BH1's orbit. The RVs yield a spectroscopic mass functionfMBH=3.9358±0.0002M—about 7000σabove the ∼2.5Mmaximum neutron star mass. Including the inclination constraint from Gaia astrometry, this implies a BH mass ofMBH= 9.27 ± 0.10M.

     
    more » « less
  2. Abstract

    A stable-frequency transmitter with relative radial acceleration to a receiver will show a change in received frequency over time, known as a “drift rate.” For a transmission from an exoplanet, we must account for multiple components of drift rate: the exoplanet’s orbit and rotation, the Earth’s orbit and rotation, and other contributions. Understanding the drift rate distribution produced by exoplanets relative to Earth, can (a) help us constrain the range of drift rates to check in a Search for Extraterrestrial Intelligence project to detect radio technosignatures, and (b) help us decide validity of signals-of-interest, as we can compare drifting signals with expected drift rates from the target star. In this paper, we modeled the drift rate distribution for ∼5300 confirmed exoplanets, using parameters from the NASA Exoplanet Archive (NEA). We find that confirmed exoplanets have drift rates such that 99% of them fall within the ±53 nHz range. This implies a distribution-informed maximum drift rate ∼4 times lower than previous work. To mitigate the observational biases inherent in the NEA, we also simulated an exoplanet population built to reduce these biases. The results suggest that, for a Kepler-like target star without known exoplanets, ±0.44 nHz would be sufficient to account for 99% of signals. This reduction in recommended maximum drift rate is partially due to inclination effects and bias toward short orbital periods in the NEA. These narrowed drift rate maxima will increase the efficiency of searches and save significant computational effort in future radio technosignature searches.

     
    more » « less
  3. Abstract

    The Breakthrough Listen search for intelligent life is, to date, the most extensive technosignature search of nearby celestial objects. We present a radio technosignature search of the centers of 97 nearby galaxies, observed by Breakthrough Listen at the Robert C. Byrd Green Bank Telescope. We performed a narrowband Doppler drift search using theturboSETIpipeline with a minimum signal-to-noise parameter threshold of 10, across a drift rate range of ±4 Hz s−1, with a spectral resolution of 3 Hz and a time resolution of ∼18.25 s. We removed radio frequency interference (RFI) by using an on-source/off-source cadence pattern of six observations and discarding signals with Doppler drift rates of 0. We assess factors affecting the sensitivity of the Breakthrough Listen data reduction and search pipeline using signal injection and recovery techniques and apply new methods for the investigation of the RFI environment. We present results in four frequency bands covering 1–11 GHz, and place constraints on the presence of transmitters with equivalent isotropic radiated power on the order of 1026W, corresponding to the theoretical power consumption of Kardashev Type II civilizations.

     
    more » « less
  4. ABSTRACT

    In this work, we present the discovery and confirmation of two hot Jupiters orbiting red giant stars, TOI-4377 b and TOI-4551 b, observed by Transiting Exoplanet Survey Satellite in the Southern ecliptic hemisphere and later followed-up with radial-velocity (RV) observations. For TOI-4377 b, we report a mass of $0.957^{+0.089}_{-0.087} \ M_\mathrm{J}$ and a inflated radius of 1.348 ± 0.081 RJ orbiting an evolved intermediate-mass star (1.36 M⊙ and 3.52 R⊙; TIC 394918211) on a period of of 4.378 d. For TOI-4551 b, we report a mass of 1.49 ± 0.13 MJ and a radius that is not obviously inflated of $1.058^{+0.110}_{-0.062} \ R_\mathrm{J}$, also orbiting an evolved intermediate-mass star (1.31 M⊙ and 3.55 R⊙; TIC 204650483) on a period of 9.956 d. We place both planets in context of known systems with hot Jupiters orbiting evolved hosts, and note that both planets follow the observed trend of the known stellar incident flux-planetary radius relation observed for these short-period giants. Additionally, we produce planetary interior models to estimate the heating efficiency with which stellar incident flux is deposited in the planet’s interior, estimating values of $1.91 \pm 0.48~{{\ \rm per\ cent}}$ and $2.19 \pm 0.45~{{\ \rm per\ cent}}$ for TOI-4377 b and TOI-4551 b, respectively. These values are in line with the known population of hot Jupiters, including hot Jupiters orbiting main-sequence hosts, which suggests that the radii of our planets have re-inflated in step with their parent star’s brightening as they evolved into the post-main sequence. Finally, we evaluate the potential to observe orbital decay in both systems.

     
    more » « less
  5. Abstract

    An intriguing pattern among exoplanets is the lack of detected planets between approximately 1.5Rand 2.0R. One proposed explanation for this “radius gap” is the photoevaporation of planetary atmospheres, a theory that can be tested by studying individual planetary systems. Kepler-105 is an ideal system for such testing due to the ordering and sizes of its planets. Kepler-105 is a Sun-like star that hosts two planets straddling the radius gap in a rare architecture with the larger planet closer to the host star (Rb= 2.53 ± 0.07R,Pb= 5.41 days,Rc= 1.44 ± 0.04R,Pc= 7.13 days). If photoevaporation sculpted the atmospheres of these planets, then Kepler-105b would need to be much more massive than Kepler-105c to retain its atmosphere, given its closer proximity to the host star. To test this hypothesis, we simultaneously analyzed radial velocities and transit-timing variations of the Kepler-105 system, measuring disparate masses ofMb= 10.8 ± 2.3M(ρb= 3.68 ± 0.84 g cm−3) andMc= 5.6 ± 1.2M(ρc= 10.4 ± 2.39 g cm−3). Based on these masses, the difference in gas envelope content of the Kepler-105 planets could be entirely due to photoevaporation (in 76% of scenarios), although other mechanisms like core-powered mass loss could have played a role for some planet albedos.

     
    more » « less
  6. Abstract

    Wolf 359 (CN Leo, GJ 406, Gaia DR3 3864972938605115520) is a low-mass star in the fifth-closest neighboring system (2.41 pc). Because of its relative youth and proximity, Wolf 359 offers a unique opportunity to study substellar companions around M stars using infrared high-contrast imaging and radial velocity monitoring. We present the results ofMs-band (4.67μm) vector vortex coronagraphic imaging using Keck-NIRC2 and add 12 Keck-HIRES and 68 MAROON-X velocities to the radial velocity baseline. Our analysis incorporates these data alongside literature radial velocities from CARMENES, the High Accuracy Radial velocity Planet Searcher, and Keck-HIRES to rule out the existence of a close (a< 10 au) stellar or brown dwarf companion and the majority of large gas giant companions. Our survey does not refute or confirm the long-period radial velocity candidate, Wolf 359 b (P∼ 2900 days), but rules out the candidate's existence as a large gas giant (>4MJup) assuming an age of younger than 1 Gyr. We discuss the performance of our high-contrast imaging survey to aid future observers using Keck-NIRC2 in conjunction with the vortex coronagraph in theMsband and conclude by exploring the direct imaging capabilities with JWST to observe Jupiter- and Neptune-mass planets around Wolf 359.

     
    more » « less
  7. Abstract

    The Search for Extraterrestrial Intelligence has traditionally been conducted at radio wavelengths, but optical searches are well-motivated and increasingly feasible due to the growing availability of high-resolution spectroscopy. We present a data analysis pipeline to search Automated Planet Finder (APF) spectroscopic observations from the Levy Spectrometer for intense, persistent, narrow-bandwidth optical lasers. We describe the processing of the spectra, the laser search algorithm, and the results of our laser search on 1983 spectra of 388 stars as part of the Breakthrough Listen search for technosignatures. We utilize an empirical spectra-matching algorithm calledSpecMatch-Empto produce residuals between each target spectrum and a set of best-matching catalog spectra, which provides the basis for a more sensitive search than previously possible. We verify thatSpecMatch-Empperforms well on APF-Levy spectra by calibrating the stellar properties derived by the algorithm against theSpecMatch-Emplibrary and against Gaia catalog values. We leverage our unique observing strategy, which produces multiple spectra of each target per night of observing, to increase our detection sensitivity by programmatically rejecting events that do not persist between observations. With our laser search algorithm, we achieve a sensitivity equivalent to the ability to detect an 84 kW laser at the median distance of a star in our data set (78.5 ly). We present the methodology and vetting of our laser search, finding no convincing candidates consistent with potential laser emission in our target sample.

     
    more » « less
  8. Abstract

    We present and confirm TOI-1751 b, a transiting sub-Neptune orbiting a slightly evolved, solar-type, metal-poor star (Teff= 5996 ± 110 K,log(g)=4.2±0.1,V= 9.3 mag, [Fe/H] = −0.40 ± 0.06 dex) every 37.47 days. We use TESS photometry to measure a planet radius of2.770.07+0.15R. We also use both Keck/HIRES and APF/Levy radial velocities (RV) to derive a planet mass of14.53.14+3.15M, and thus a planet density of 3.6 ± 0.9 g cm−3. There is also a long-period (∼400 days) signal that is observed in only the Keck/HIRES data. We conclude that this long-period signal is not planetary in nature and is likely due to the window function of the Keck/HIRES observations. This highlights the role of complementary observations from multiple observatories to identify and exclude aliases in RV data. Finally, we investigate the potential compositions of this planet, including rocky and water-rich solutions, as well as theoretical irradiated ocean models. TOI-1751 b is a warm sub-Neptune with an equilibrium temperature of ∼820 K. As TOI-1751 is a metal-poor star, TOI-1751 b may have formed in a water-enriched formation environment. We thus favor a volatile-rich interior composition for this planet.

     
    more » « less
  9. Abstract

    The extreme environments of ultra-short-period planets (USPs) make excellent laboratories to study how exoplanets obtain, lose, retain, and/or regain gaseous atmospheres. We present the confirmation and characterization of the USP TOI-1347 b, a 1.8 ± 0.1Rplanet on a 0.85 day orbit that was detected with photometry from the TESS mission. We measured radial velocities of the TOI-1347 system using Keck/HIRES and HARPS-N and found the USP to be unusually massive at 11.1 ± 1.2M. The measured mass and radius of TOI-1347 b imply an Earth-like bulk composition. A thin H/He envelope (>0.01% by mass) can be ruled out at high confidence. The system is between 1 and 1.8 Gyr old; therefore, intensive photoevaporation should have concluded. We detected a tentative phase-curve variation (3σ) and a secondary eclipse (2σ) in TESS photometry, which, if confirmed, could indicate the presence of a high-mean-molecular-weight atmosphere. We recommend additional optical and infrared observations to confirm the presence of an atmosphere and investigate its composition.

     
    more » « less