skip to main content


Search for: All records

Creators/Authors contains: "Jackson, Matthew G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Major and trace element abundances, including highly siderophile elements, and 187Os and 182W isotopic compositions were determined for ca. 89 Ma mafic and ultramafic rocks from the islands of Gorgona (Colombia) and Curaçao (Dutch Caribbean). The volcanic systems of both islands were likely associated with a mantle plume that generated the Caribbean Large Igneous Provence. The major and lithophile trace element characteristics of the rocks examined are consistent with the results of prior studies, and indicate derivation from both a chemically highly-depleted mantle component, and an enriched, or less highly-depleted mantle component. Highly siderophile element abundances for these rocks are generally similar to rocks with comparable MgO globally, indicating that the major source components were not substantially enriched or depleted in these elements. Rhenium-Os isotopic systematics of most rocks of both islands indicate derivation from a mantle source with an initial 187Os/188Os ratio between that of the contemporaneous average depleted mid-ocean ridge mantle and bulk silicate Earth. The composition may reflect either an average lower mantle signature, or global-scale Os isotopic heterogeneity in the upper mantle. Some of the basalts, as well as two of the komatiites, are characterized by calculated initial 187Os/188Os ratios 10-15% higher than the chondritic reference. These more radiogenic Os isotopic compositions do not correlate with major or trace element systematics, and indicate a mantle source component that was most likely produced by either sulfide metasomatism or ancient Re/Os fractionation. Tungsten-182 isotopic compositions measured for rocks from both islands are characterized by variable 182W values ranging from modern bulk silicate Earth-like to strongly negative values. The 182W values do not correlate with major/trace element abundances or initial 187Os/188Os compositions. As with some modern ocean island basalt systems, however, the lowest 182W value (-53) measured, for a Gorgona olivine gabbro, corresponds with the highest 3He/4He previously measured from the suite (15.8 R/RA). Given the lack of correlation with other chemical/isotopic compositions, the mantle component characterized by negative 182W and possibly high 3He/4He is most parsimoniously explained to have formed as a result of isotopic equilibration between the mantle and core at the core-mantle boundary. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Mantle plumes contain heterogenous chemical components and sample variable depths of the mantle, enabling glimpses into the compositional structure of Earth's interior. In this study, we evaluated ocean island basalts (OIB) from nine plume locations to provide a global and systematic assessment of the relationship betweenfO2and He‐Sr‐Nd‐Pb‐W‐Os isotopic compositions. Ocean island basalts from the Pacific (Austral Islands, Hawaii, Mangaia, Samoa, Pitcairn), Atlantic (Azores, Canary Islands, St. Helena), and Indian Oceans (La Réunion) reveal thatfO2in OIB is heterogeneous both within and among hotspots. Taken together with previous studies, global OIB have elevated and heterogenousfO2(average = +0.5 ∆FMQ; 2SD = 1.5) relative to prior estimates of global mid‐ocean ridge basalts (MORB; average = −0.1 ∆FMQ; 2SD = 0.6), though many individual OIB overlap MORB. Specific mantle components, such as HIMU and enriched mantle 2 (EM2), defined by radiogenic Pb and Sr isotopic compositions compared to other OIB, respectively, have distinctly highfO2based on statistical analysis. ElevatedfO2in OIB samples of these components is associated with higher whole‐rock CaO/Al2O3and olivine CaO content, which may be linked to recycled carbonated oceanic crust. EM1‐type and geochemically depleted OIB are generally not as oxidized, possibly due to limited oxidizing potential of the recycled material in the enriched mantle 1 (EM1) component (e.g., sediment) or lack of recycled materials in geochemically depleted OIB. Despite systematic offset of thefO2among EM1‐, EM2‐, and HIMU‐type OIB, geochemical indices of lithospheric recycling, such as Sr‐Nd‐Pb‐Os isotopic systems, generally do not correlate withfO2.

     
    more » « less
  3. Volcanic hotspots are thought to be fed by hot, active upwellings from the deep mantle, with excess temperatures ( T ex ) ~100° to 300°C higher than those of mid-ocean ridges. However, T ex estimates are limited in geographical coverage and often inconsistent for individual hotspots. We infer the temperature of oceanic hotspots and ridges simultaneously by converting seismic velocity to temperature. We show that while ~45% of plume-fed hotspots are hot ( T ex ≥ 155°C), ~15% are cold ( T ex ≤ 36°C) and ~40% are not hot enough to actively upwell (50°C ≤ T ex ≤ 136°C). Hot hotspots have an extremely high helium-3/helium-4 ratio and buoyancy flux, but cold hotspots do not. The latter may originate at upper mantle depths. Alternatively, the deep plumes that feed them may be entrained and cooled by small-scale convection. 
    more » « less
  4. Abstract To deconvolve contributions from the four overlapping hotspots that form the “hotspot highway” on the Pacific plate—Samoa, Rarotonga, Arago-Rurutu, and Macdonald—we geochemically characterize and/or date (by the 40Ar/39Ar method) a suite of lavas sampled from the eastern region of the Samoan hotspot and the region “downstream” of the Samoan hotspot track. We find that Papatua seamount, located ~60 km south of the axis of the Samoan hotspot track, has lavas with both a HIMU (high μ = 238U/204Pb) composition (206Pb/204Pb = 20.0), previously linked to one of the Cook-Austral hotspots, and an enriched mantle I (EM1) composition, which we interpret to be rejuvenated and Samoan in origin. We show that these EM1 rejuvenated lavas at Papatua are geochemically similar to rejuvenated volcanism on Samoan volcanoes and suggest that flexural uplift, caused by tectonic forces associated with the nearby Tonga trench, triggered a new episode of melting of Samoan mantle material that had previously flattened and spread laterally along the base of the Pacific plate under Papatua, resulting in volcanism that capped the previous HIMU edifice. We argue that this process generated Samoan rejuvenated volcanism on the older Cook-Austral volcano of Papatua. We also study Waterwitch seamount, located ~820 km WNW of the Samoan hotspot, and provide an age (10.49 ± 0.09 Ma) that places it on the Samoan hotspot trend, showing that it is genetically Samoan and not related to the Cook-Austral hotspots as previously suggested. Consequently, with the possible exception of the HIMU stage of Papatua seamount, there are currently no known Arago-Rurutu plume-derived lava flows sampled along the swath of Pacific seafloor that stretches between Rose seamount (~25 Ma) and East Niulakita seamount (~45 Ma), located 1400 km to the west. The “missing” ~20-million-year segment of the Arago-Rurutu hotspot track may have been subducted into the northern Tonga trench, or perhaps was covered by subsequent volcanism from the overlapping Samoan hotspot, and has thus eluded sampling. Finally, we explore tectonic reactivation as a cause for anomalously young volcanism present within the western end of the Samoan hotspot track. 
    more » « less
  5. The noble gas isotope systematics of ocean island basalts suggest the existence of primordial mantle signatures in the deep mantle. Yet, the isotopic compositions of lithophile elements (Sr, Nd, Hf) in these lavas require derivation from a mantle source that is geochemically depleted by melt extraction rather than primitive. Here, this apparent contradiction is resolved by employing a compilation of the Sr, Nd, and Hf isotope composition of kimberlites—volcanic rocks that originate at great depth beneath continents. This compilation includes kimberlites as old as 2.06 billion years and shows that kimberlites do not derive from a primitive mantle source but sample the same geochemically depleted component (where geochemical depletion refers to ancient melt extraction) common to most oceanic island basalts, previously called PREMA (prevalent mantle) or FOZO (focal zone). Extrapolation of the Nd and Hf isotopic compositions of the kimberlite source to the age of Earth formation yields a143Nd/144Nd-176Hf/177Hf composition within error of chondrite meteorites, which include the likely parent bodies of Earth. This supports a hypothesis where the source of kimberlites and ocean island basalts contains a long-lived component that formed by melt extraction from a domain with chondritic143Nd/144Nd and176Hf/177Hf shortly after Earth accretion. The geographic distribution of kimberlites containing the PREMA component suggests that these remnants of early Earth differentiation are located in large seismically anomalous regions corresponding to thermochemical piles above the core–mantle boundary. PREMA could have been stored in these structures for most of Earth’s history, partially shielded from convective homogenization.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    Lavas erupted at hotspot volcanoes provide evidence of mantle heterogeneity. Samoan Island lavas with high87Sr/86Sr (>0.706) typify a mantle source incorporating ancient subducted sediments. To further characterize this source, we target a single high87Sr/86Sr lava from Savai’i Island, Samoa for detailed analyses of87Sr/86Sr and143Nd/144Nd isotopes and major and trace elements on individual magmatic clinopyroxenes. We show the clinopyroxenes exhibit a remarkable range of87Sr/86Sr—including the highest observed in an oceanic hotspot lava—encompassing ~30% of the oceanic mantle’s total variability. These new isotopic data, data from other Samoan lavas, and magma mixing calculations are consistent with clinopyroxene87Sr/86Sr variability resulting from magma mixing between a high silica, high87Sr/86Sr (up to 0.7316) magma, and a low silica, low87Sr/86Sr magma. Results provide insight into the composition of magmas derived from a sediment-infiltrated mantle source and document the fate of sediment recycled into Earth’s mantle.

     
    more » « less