skip to main content


Search for: All records

Creators/Authors contains: "Jadliwala, Murtuza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Lock picking and key bumping are the most common attacks on traditional pin tumbler door locks. However, these approaches require physical access to the lock throughout the attack, increasing suspicion and chances of the attacker getting caught. To overcome this challenge, we propose Keynergy, a stealthy offline attack that infers key bittings (or secret) by substantially extending and improving prior work that only utilizes a still image of the key. Keynergy effectively utilizes the inherent audible “clicks” due to a victim's key insertion, together with video footage of the victim holding the key, in order to infer the victim's key's bittings. We evaluate Keynergy via a proof-of-concept implementation and real-world experiments comprising of participants that perform multiple key insertions across a total of 75 keys with the related audio recorded using different microphone types placed at varying distances. We demonstrate that Keynergy achieves an average reduction rate of around 75% with an acoustics-based approach alone. When we combine both acoustics and video together, Keynergy obtains a reduced keyspace below ten keys for 8% of the keys (i.e., six keys out of 75 keys tested). 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Modern Internet-enabled smart lights promise energy efficiency and many additional capabilities over traditional bulbs. However, these connected lights also expose a new attack surface, which can be maliciously used to violate users' privacy and security. We design and evaluate novel inference attacks that take advantage of the light emitted by these smart lights to infer sensitive user data and preferences. 
    more » « less
  5. null (Ed.)
    Modern Internet-enabled smart lights promise energy efficiency and many additional capabilities over traditional lamps. However, these connected lights also create a new attack surface, which can be maliciously used to violate users' privacy and security. In this paper, we design and evaluate novel attacks that take advantage of light emitted by modern smart bulbs, in order to infer users' private data and preferences. The first two attacks are designed to infer users' audio and video playback by a systematic observation and analysis of the multimedia-visualization functionality of smart light bulbs. The third attack utilizes the infrared capabilities of such smart light bulbs to create a covert-channel, which can be used as a gateway to exfiltrate user's private data out of their secured home or office network. A comprehensive evaluation of these attacks in various real-life settings confirms their feasibility and affirms the need for new privacy protection mechanisms. 
    more » « less