skip to main content


Search for: All records

Creators/Authors contains: "Javid, Usman A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Soliton microcombs are a promising new approach for photonic-based microwave signal synthesis. To date, however, the tuning rate has been limited in microcombs. Here, we demonstrate the first microwave-rate soliton microcomb whose repetition rate can be tuned at a high speed. By integrating an electro-optic modulation element into a lithium niobate comb microresonator, a modulation bandwidth up to 75 MHz and a continuous frequency modulation rate up to 5.0 × 1014Hz/s are achieved, several orders-of-magnitude faster than existing microcomb technology. The device offers a significant bandwidth of up to tens of gigahertz for locking the repetition rate to an external microwave reference, enabling both direct injection locking and feedback locking to the comb resonator itself without involving external modulation. These features are especially useful for disciplining an optical voltage-controlled oscillator to a long-term reference and the demonstrated fast repetition rate control is expected to have a profound impact on all applications of frequency combs.

     
    more » « less
  2. Abstract

    The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0 × 1018Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR.

     
    more » « less
  3. Abstract

    Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metrics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here, we make an important step towards miniaturizing functional components on this platform, reporting high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz V−1, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58μm3. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb s−1with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics.

     
    more » « less
  4. High-fidelity periodic poling over long lengths is required for robust, quasi-phase-matched second-harmonic generation using the fundamental, quasi-TE polarized waveguide modes in a thin-film lithium niobate (TFLN) waveguide. Here, a shallow-etched ridge waveguide is fabricated in x-cut magnesium oxide doped TFLN and is poled accurately over 5 mm. The high fidelity of the poling is demonstrated over long lengths using a non-destructive technique of confocal scanning second-harmonic microscopy. We report a second-harmonic conversion efficiency of up to 939 %.W−1(length-normalized conversion efficiency 3757 %.W−1.cm−2), measured at telecommunications wavelengths. The device demonstrates a narrow spectral linewidth (1 nm) and can be tuned precisely with a tuning characteristic of 0.1 nm/°C, over at least 40 °C without measurable loss of efficiency.

     
    more » « less
  5. Abstract

    Many technologies emerging from quantum information science heavily rely upon the generation and manipulation of entangled quantum states. Here, we propose and demonstrate a new class of quantum interference phenomena that arise when states are created in and coherently converted between the propagating modes of an optical microcavity. The modal coupling introduces several new creation pathways to a nonlinear optical process within the device, which quantum mechanically interfere to drive the system between states in the time domain. The coherent conversion entangles the generated biphotons between propagation pathways, leading to cyclically evolving path-entanglement and the manifestation of coherent oscillations in second-order temporal correlations. Furthermore, the rich device physics is harnessed to tune properties of the quantum states. In particular, we show that the strength of interference between pathways can be coherently controlled, allowing for manipulation of the degree of entanglement, which can even be entirely quenched. The states can likewise be made to flip-flop between exhibiting initially correlated or uncorrelated behavior. The phenomena presented here open a route to creating higher dimensional entanglement and exotic multi-photon states.

     
    more » « less
  6. Abstract

    Photonic sensors based upon high‐quality microcavities have found a wide variety of applications ranging from inertial sensing, electro‐ and magnetometry to chemical and biological sensing. These sensors have a dynamic range limited by the linewidth of the cavity mode transducing the input. This dynamic range not only determines the range of the signal strength that can be detected, but also affects the resilience of the sensor against large deteriorating external perturbations and shocks in a practical environment. Unfortunately, there is a general trade‐off between the detection sensitivity and the dynamic range, which undermines the performance of all microcavity‐based sensors. Here, an approach is proposed to extend the dynamic range significantly beyond the cavity linewidth limit by exploiting the periodic nature of the modulation signal, making measurements in the nonlinear transduction regime without degrading the detection sensitivity for weak signals. With a cavity optomechanical system, a dynamic range of over six times larger than the cavity linewidth is experimentally demonstrated, far beyond the conventional linear region of operation for such a sensor. This approach will help design microcavity‐based sensors to achieve high detection sensitivity and a large dynamic range at the same time, a crucial property for their use in a practical environment.

     
    more » « less
  7. Abstract

    High‐coherence visible and near‐visible laser sources are centrally important to the operation of advanced position/navigation/timing systems as well as classical/quantum sensing systems. However, the complexity and size of these bench‐top lasers are an impediment to their transition beyond the laboratory. Here, a system‐on‐chip that emits high‐coherence near‐visible lightwaves is demonstrated. The devices rely upon a new approach wherein wavelength conversion and coherence increase by self‐injection locking are combined within a single nonlinear resonator. This simplified approach is demonstrated in a hybridly‐integrated device and provides a short‐term linewidth of around 4.7 kHz (10 kHz before filtering). On‐chip converted optical power over 2 mW is also obtained. Moreover, measurements show that heterogeneous integration can result in a conversion efficiency higher than 25% with an output power over 11 mW. Because the approach uses mature III–V pump lasers in combination with thin‐film lithium niobate, it can be scaled for low‐cost manufacturing of high‐coherence visible emitters. Also, the coherence generation process can be transferred to other frequency conversion processes, including optical parametric oscillation, sum/difference frequency generation, and third‐harmonic generation.

     
    more » « less