skip to main content


Search for: All records

Creators/Authors contains: "Jennings, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Elucidating the geologic history of the Greenland Ice Sheet (GrIS) is essential for understanding glacial instability thresholds, identified as major climate system tipping points, and how the cryosphere will respond to anthropogenic greenhouse gas emissions. To address current knowledge gaps in the evolution and variability of the GrIS and its role in Earth's climate system, International Ocean Discovery Program (IODP) Expedition 400 obtained sedimentary records from Sites U1603–U1608 across the northwest Greenland margin into Baffin Bay where thick Cenozoic sedimentary successions can be directly linked to the evolution of the northern GrIS (NGrIS). The strategy of drilling along this transect was to retrieve a composite stratigraphic succession representing the late Cenozoic era from the Oligocene/early Miocene to Holocene. The proposed sites targeted high–accumulation rate deposits associated with contourite drifts and potential interglacial deposits within a trough mouth fan system densely covered by seismic data. The principal objectives were to (1) test if the NGrIS underwent near-complete deglaciations in the Pleistocene and assess the ice sheet’s response to changes in orbital cyclicities through the mid-Pleistocene transition; (2) ascertain the timing of the NGrIS expansion and examine a hypothesized linkage between marine heat transport through Baffin Bay and high Arctic warmth during the Pliocene; and (3) provide new understandings of climate-ecosystem conditions in Greenland during the geologic periods with increased atmospheric CO2 compared to preindustrial values, encompassing the last 30 My. The deep time objective was attained by coring at Site U1607 on the inner shelf to 978 meters below seafloor, capturing a succession of mainly Miocene and Oligocene age. The six sites drilled during Expedition 400 resulted in 2299 m of recovered core material, and wireline downhole logging was completed at Sites U1603, U1604, U1607, and U1608. This unique archive will provide the basis for understanding the full range of forcings and feedbacks—oceanic, atmospheric, orbital, and tectonic—that influence the GrIS over a range of timescales, as well as conditions prevailing at the time of glacial inception and deglacial to interglacial periods. We anticipate that the shipboard data and further analytical work on Expedition 400 material can constrain predictive models addressing the GrIS response to global warming and its impending effects on global sea levels. 
    more » « less
    Free, publicly-accessible full text available January 25, 2025
  2. Elucidating the long-term history of the Greenland Ice Sheet (GrIS) is essential for understanding glacial instability thresholds, identified as major climate system tipping points, and how the cryosphere will respond to anthropogenic greenhouse gas emissions. To address current knowledge gaps in the evolution and variability of the GrIS and its role in Earth's climate system, International Ocean Discovery Program (IODP) Expedition 400 will obtain cores from seven sites across the northwest Greenland margin into Baffin Bay where thick Cenozoic sedimentary successions can be directly linked to the evolution of the northern GrIS (NGrIS). The strategy of drilling along this transect is to retrieve a composite stratigraphic succession representing the Late Cenozoic era from the Oligocene/Early Miocene to Holocene. The proposed sites will specifically target high–accumulation rate deposits associated with contourite drifts and potential interglacial deposits within a trough mouth fan system densely covered by seismic data. We seek to test if the NGrIS underwent near-complete deglaciations in the Pleistocene and to assess the ice sheet’s response to changes in orbital cyclicities through the mid-Pleistocene transition. Paleoclimate records will be obtained that can provide chronology on the NGrIS expansion and unravel potential linkages between marine heat transport through Baffin Bay and high Arctic warmth during the Pliocene. A deep coring site (980 meters below seafloor) targeting a Miocene and Oligocene strata succession will examine possible linkages between changes in atmospheric CO2 and climate-ecosystem conditions in Greenland. The overall aim is to investigate the full range of forcings and feedbacks—oceanic, atmospheric, orbital, and tectonic—that influence the GrIS over a range of timescales, as well as conditions prevailing at the time of glacial inception and deglacial to interglacial periods. The data and results gathered from Expedition 400 will effectively constrain predictive models addressing the GrIS response to global warming and its impending effects on global sea levels. 
    more » « less
  3. Abstract The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org . The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages. 
    more » « less
    Free, publicly-accessible full text available July 28, 2024