skip to main content


Search for: All records

Creators/Authors contains: "Jia, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flat lenses with focal length tunability can enable the development of highly integrated imaging systems. This work explores machine learning to inverse design a multifocal multilevel diffractive lens (MMDL) by wavelength multiplexing. The MMDL output is multiplexed in three color channels, red (650 nm), green (550 nm), and blue (450 nm), to achieve varied focal lengths of 4 mm, 20 mm, and 40 mm at these three color channels, respectively. The focal lengths of the MMDL scale significantly with the wavelength in contrast to conventional diffractive lenses. The MMDL consists of concentric rings with equal widths and varied heights. The machine learning method is utilized to optimize the height of each concentric ring to obtain the desired phase distribution so as to achieve varied focal lengths multiplexed by wavelengths. The designed MMDL is fabricated through a direct-write laser lithography system with gray-scale exposure. The demonstrated singlet lens is miniature and polarization insensitive, and thus can potentially be applied in integrated optical imaging systems to achieve zooming functions.

     
    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. Transformation of multifunctional materials with control over site-selectivity and chemical diversity remains challenging. Herein, we present a metal-free, one-pot strategy for the defluorophosphorylation of polyfluoroalkyl peroxides that enables expedient construction of structurally diverse phosphoryl-containing heterocyclic libraries. By judicious choice of reaction conditions, C 3,4-diphosphoryl furans and C 4-monophosphoryl furans can be easily accessed. In addition, synthetic derivatization of the obtained organophosphorus heteroarenes to value-added monodentate and bidentate phosphines has been demonstrated. Mechanistic studies revealed that regioselective defluorophosphorylation allows divergent product formation in two reaction modes. 
    more » « less
  4. Subramania, Ganapathi S. ; Foteinopoulou, Stavroula (Ed.)
  5. A thermal component is suggested to be the physical composition of the ejecta of several bright gamma-ray bursts (GRBs). Such a thermal component is discovered in the time-integrated spectra of several short GRBs as well as long GRBs. In this work, we present a comprehensive analysis of ten very short GRBs detected by Fermi Gamma-Ray Burst Monitor to search for the thermal component. We found that both the resultant low-energy spectral index and the peak energy in each GRB imply a common hard spectral feature, which is in favor of the main classification of the short/hard versus long/soft dichotomy in the GRB duration. We also found moderate evidence for the detection of thermal component in eight GRBs. Although such a thermal component contributes a small proportion of the global prompt gamma-ray emission, the modified thermal-radiation mechanism could enhance the proportion significantly, such as in subphotospheric dissipation. 
    more » « less
  6. In this paper, we discuss flat programmable multi-level diffractive lenses (PMDL) enabled by phase change materials working in the near-infrared and visible ranges. The high real part refractive index contrast (Δn ∼ 0.6) of Sb 2 S 3 between amorphous and crystalline states, and extremely low losses in the near-infrared, enable the PMDL to effectively shift the lens focus when the phase of the material is altered between its crystalline and amorphous states. In the visible band, although losses can become significant as the wavelength is reduced, the lenses can still provide good performance as a result of their relatively small thickness (∼ 1.5λ to 3λ). The PMDL consists of Sb 2 S 3 concentric rings with equal width and varying heights embedded in a glass substrate. The height of each concentric ring was optimized by a modified direct binary search algorithm. The proposed designs show the possibility of realizing programmable lenses at design wavelengths from the near-infrared (850 nm) up to the blue (450 nm) through engineering PMDLs with Sb 2 S 3 . Operation at these short wavelengths, to the best of our knowledge, has not been studied so far in reconfigurable lenses with phase-change materials. Therefore, our results open a wider range of applications for phase-change materials, and show the prospect of Sb 2 S 3 for such applications. The proposed lenses are polarization insensitive and can have the potential to be applied in dual-functionality devices, optical imaging, and biomedical science. 
    more » « less
  7. This work discusses the design and fabrication of a dual-plane terahertz (THz) hologram and an extended-depth-of-focus THz diffractive lens. The dual-plane THz hologram consists of 50 × 50 diffractive optical elements with identical element pixel size 1×1 mm, and the extended-depth-of-focus THz diffractive lens is designed with 25 concentric rings with identical ring width of 1 mm, resulting in same device dimension 50 mm × 50 mm. The height of the hologram pixels and concentric rings of the diffractive lens are optimized by nonlinear optimization algorithms with scalar diffraction theory based on Ray-Sommerfeld diffraction equation. Finite-Difference Time-Domain (FDTD) simulation results agree with optimization results obtained from the scalar diffraction theory for both the THz hologram and the THz diffractive lens. The demonstrated experimental results show that the proposed THz hologram and THz diffractive lens can generate the desired diffraction patterns. These diffractive structures have the potential to be applied in areas such as THz imaging, data storage, and displays.

     
    more » « less
  8. Abstract

    Machine learning can empower the design of cascaded diffractive optical elements (DOEs) at terahertz frequencies enabling the realization of holograms with a tailored multi‐degree‐of‐freedom reconfigurable operation when altering either the number, spacing, rotational alignment, and/or order of the elements. This unprecedented control over the spatial terahertz light distribution can profoundly impact multiple terahertz applications such as signal multiplexing, imaging, and displays. This work demonstrates this multi‐degree‐of‐freedom control in structures fabricated through 3D printing employing low‐loss materials. The designs are validated through 3D finite‐difference time‐domain (FDTD) simulations and experimental measurements, showing that, in all cases, the desired diffraction patterns are generated.

     
    more » « less
  9. null (Ed.)