skip to main content


Search for: All records

Creators/Authors contains: "Jia, Yunhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Automated Lane Centering (ALC) systems are convenient and widely deployed today, but also highly security and safety critical. In this work, we are the first to systematically study the security of state-of-the-art deep learning based ALC systems in their designed operational domains under physical-world adversarial attacks. We formulate the problem with a safetycritical attack goal, and a novel and domain-specific attack vector: dirty road patches. To systematically generate the attack, we adopt an optimization-based approach and overcome domain-specific design challenges such as camera frame interdependencies due to attack-influenced vehicle control, and the lack of objective function design for lane detection models. We evaluate our attack on a production ALC using 80 scenarios from real-world driving traces. The results show that our attack is highly effective with over 97.5% success rates and less than 0.903 sec average success time, which is substantially lower than the average driver reaction time. This attack is also found (1) robust to various real-world factors such as lighting conditions and view angles, (2) general to different model designs, and (3) stealthy from the driver’s view. To understand the safety impacts, we conduct experiments using software-in-the-loop simulation and attack trace injection in a real vehicle. The results show that our attack can cause a 100% collision rate in different scenarios, including when tested with common safety features such as automatic emergency braking. We also evaluate and discuss defenses. 
    more » « less
  3. null (Ed.)
  4. Recent work in adversarial machine learning started to focus on the visual perception in autonomous driving and studied Adversarial Examples (AEs) for object detection models. However, in such visual perception pipeline the detected objects must also be tracked, in a process called Multiple Object Tracking (MOT), to build the moving trajectories of surrounding obstacles. Since MOT is designed to be robust against errors in object detection, it poses a general challenge to existing attack techniques that blindly target objection detection: we find that a success rate of over 98% is needed for them to actually affect the tracking results, a requirement that no existing attack technique can satisfy. In this paper, we are the first to study adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving, and discover a novel attack technique, tracker hijacking, that can effectively fool MOT using AEs on object detection. Using our technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards. We perform evaluation using the Berkeley Deep Drive dataset and find that on average when 3 frames are attacked, our attack can have a nearly 100% success rate while attacks that blindly target object detection only have up to 25%. 
    more » « less