skip to main content


Search for: All records

Creators/Authors contains: "Jiang, De-en"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. Atomically precise nanoclusters play an important role in nanoscale catalysis, photonics, and quantum information science. Their nanochemical properties arise from their unique superatomic electronic structures. As the flagship of atomically precise nanochemistry, the Au 25 (SR) 18 nanocluster exhibits tunable spectroscopic signatures that are sensitive to the oxidation state. This work aims to unravel the physical underpinnings of the spectral progression of Au 25 (SR) 18 nanocluster using variational relativistic time-dependent density functional theory. The investigation will focus on the effects of superatomic spin–orbit coupling, its interplay with Jahn–Teller distortion, and their manifestations in the absorption spectra of Au 25 (SR) 18 nanoclusters of different oxidation states. 
    more » « less
  4. Free, publicly-accessible full text available May 24, 2024
  5. Abstract

    The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7electrocatalyst. Such a strategy not only produces more valuable anodic product than O2but also releases H2at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2with a cell voltage of only 0.60 V.

     
    more » « less
  6. Abstract

    The electrochemical stability window of water is known to vary with the type and concentration of dissolved salts. However, the underlying influence of ions on the thermodynamic stability of aqueous solutions has not been fully understood. Here, we investigated the electrolytic behaviors of aqueous electrolytes as a function of different ions. Our findings indicate that ions with high ionic potentials, i.e., charge density, promote the formation of their respective hydration structures, enhancing electrolytic reactions via an inductive effect, particularly for small cations. Conversely, ions with lower ionic potentials increase the proportion of free water molecules—those not engaged in hydration shells or hydrogen‐bonding networks—leading to greater electrolytic stability. Furthermore, we observe that the chemical environment created by bulky ions with lower ionic potentials impedes electrolytic reactions by frustrating the solvation of protons and hydroxide ions, the products of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. We found that the solvation of protons plays a more substantial role than that of hydroxide, which explains a greater shift for OER than for HER, a puzzle that cannot be rationalized by the notion of varying O−H bond strengths of water. These insights will help the design of aqueous systems.

     
    more » « less
  7. Abstract

    The electrochemical stability window of water is known to vary with the type and concentration of dissolved salts. However, the underlying influence of ions on the thermodynamic stability of aqueous solutions has not been fully understood. Here, we investigated the electrolytic behaviors of aqueous electrolytes as a function of different ions. Our findings indicate that ions with high ionic potentials, i.e., charge density, promote the formation of their respective hydration structures, enhancing electrolytic reactions via an inductive effect, particularly for small cations. Conversely, ions with lower ionic potentials increase the proportion of free water molecules—those not engaged in hydration shells or hydrogen‐bonding networks—leading to greater electrolytic stability. Furthermore, we observe that the chemical environment created by bulky ions with lower ionic potentials impedes electrolytic reactions by frustrating the solvation of protons and hydroxide ions, the products of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. We found that the solvation of protons plays a more substantial role than that of hydroxide, which explains a greater shift for OER than for HER, a puzzle that cannot be rationalized by the notion of varying O−H bond strengths of water. These insights will help the design of aqueous systems.

     
    more » « less