skip to main content


Search for: All records

Creators/Authors contains: "Jiang, Zhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Subgraph search problems such as maximal clique enumeration and subgraph matching generate a search-space tree which is traversed in depth-first manner by serial backtracking algorithms that are recursive. Since Jenkins et al. reported the backtracking paradigm to be sub-optimal for GPU acceleration, breadth-first traversal of the search-space tree is widely adopted by GPU algorithms. However, they produce a lot of intermediate subgraphs that exhaust the GPU device memory. Recent works revive the depth-first backtracking paradigm for GPU acceleration, where each warp is a basic processing unit with its own stack in device memory for subgraph backtracking. However, they adopt complicated methods for load balancing that incur a lot of overheads. They also use hardcoded fixed space for stacks that is determined ad-hoc and may lead to inaccuracy when the allocated space is insufficient. In this paper, we use subgraph matching as a case study to propose novel depth-first GPU solutions to address the above problems. Our approach, called T-DFS, decomposes the compu- tation into independent tasks that process search-space subtrees, which are managed by an efficient lock-free circular task queue. Tasks are distributed to different warps for parallel processing, and a novel timeout mechanism is used to eliminate straggler tasks to ensure load balancing. We also support flexible and fine- grained dynamic memory allocation for stack spaces to avoid the stack space allocation pitfalls of existing works. Extensive experi- ments on real graphs show that T-DFS significantly outperforms existing depth-first GPU solutions for the subgraph matching application. 
    more » « less
  2. Free, publicly-accessible full text available January 1, 2025
  3. Free, publicly-accessible full text available October 1, 2024
  4. Flood inundation mapping from Earth imagery plays a vital role in rapid disaster response and national water forecasting. However, the problem is non-trivial due to significant imagery noise and obstacles, complex spatial dependency on 3D terrains, spatial non-stationarity, and high computational cost. Existing machine learning approaches are mostly terrain-unaware and are prone to produce spurious results due to imagery noise and obstacles, requiring significant efforts in post-processing. Recently, several terrain- aware methods were proposed that incorporate complex spatial dependency (e.g., water flow directions on 3D terrains) but they assume that the inferred flood surface level is spatially stationary, making them insufficient for a large heterogeneous geographic area. To address these limitations, this paper proposes a novel spatial learning framework called hidden Markov forest, which decomposes a large heterogeneous area into local stationary zones, represents spatial dependency on 3D terrains via zonal trees (forest), and jointly infers the class map in different zonal trees with spatial regularization. We design efficient inference algorithms based on dynamic programming and multi-resolution filtering. Evaluations on real-world datasets show that our method outperforms baselines and our proposed computational refinement significantly reduces the time cost. 
    more » « less