skip to main content


Search for: All records

Creators/Authors contains: "Jin, Rongying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    PdTe is a superconductor withTc ~ 4.25 K. Recently, evidence for bulk-nodal and surface-nodeless gap features has been reported in PdTe. Here, we investigate the physical properties of PdTe in both the normal and superconducting states via specific heat and magnetic torque measurements and first-principles calculations. BelowTc, the electronic specific heat initially decreases inT3behavior (1.5 K < T < Tc) then exponentially decays. Using the two-band model, the superconducting specific heat can be well described with two energy gaps: one is 0.372 meV and another 1.93 meV. The calculated bulk band structure consists of two electron bands (α and β) and two hole bands (γ and η) at the Fermi level. Experimental detection of the de Haas-van Alphen (dHvA) oscillations allows us to identify four frequencies (Fα = 65 T,Fβ = 658 T,Fγ = 1154 T, andFη = 1867 T forH//a), consistent with theoretical predictions. Nontrivial α and β bands are further identified via both calculations and the angle dependence of the dHvA oscillations. Our results suggest that PdTe is a candidate for unconventional superconductivity.

     
    more » « less
  2. Inorganic lead-halide perovskite, cesium lead bromide (CsPbBr3), shows outstanding optoelectronic properties. Both solution- and melt-based methods have been proposed for CsPbBr3 crystal growth. The solution-based growth was done at low-temperature, whereas the melt-based growth was done at high-temperature. However, the comparison of optical, physical, and defect states using these two different growth conditions has been scarcely studied. Here, we have compared the thermal and optical properties of solution-grown and melt-grown single crystals of CsPbBr3. Positron Annihilation Lifetime Spectroscopy (PALS) analysis showed that melt-grown crystal has a relatively smaller number of defects than the chemical synthesis method. In addition, crystals grown using the chemical method showed a higher fluorescence lifetime than melt-grown CsPbBr3. 
    more » « less
  3. Abstract

    Single crystalline BaMnSb2is considered as a 3D Weyl semimetal with the 2D electronic structure containing Dirac cones from the Sb sheet. We report experimental investigation of low-temperature cleaved BaMnSb2surfaces using scanning tunneling microscopy/spectroscopy and low energy electron diffraction. By natural cleavage, we find two terminations: one is Ba (above the orthorhombically distorted Sb sheet) and another Sb2 (at the surface of the Sb/Mn/Sb sandwich layer). Both terminations show the 2 × 1 surface reconstructions, with drastically different morphologies and electronic properties, however. The reconstructed structures, defect types and nature of the electronic structures of the two terminations are extensively studied. The quasiparticle interference (QPI) analysis is conducted at the energy range between −2 V and 2 V, although no interesting states are observed near the Fermi level, the surface-projected electronic band structures strongly depend on the surface termination above 1.6 V. The existence of defects can greatly modify the local density of states to create electronic phase separations on the surface in the order of tens of nm scale. Our observation on the atomic structures of the terminations and the corresponding electronic structures provides critical information towards an understanding of topological properties of BaMnSb2.

     
    more » « less
  4. A novel antiferromagnetic semiconductor, Eu 3 Sn 2 P 4 , has been discovered. Single crystals of Eu 3 Sn 2 P 4 were prepared using the Sn self-flux method. The crystal structure determined by single crystal X-ray diffraction shows that Eu 3 Sn 2 P 4 crystallizes in the orthorhombic structure with the space group Cmca (Pearson Symbol, oP 216). Six Sn–Sn dimers connected by P atoms form a Sn 12 P 24 crown-shaped cluster with a Eu atom located in the center. Magnetization measurements indicate that the system orders antiferromagnetically below a T N ∼14 K at a low field and undergoes a metamagnetic transition at a high field when T < T N . The effective magnetic moment is 7.41(3) μ B per Eu, corresponding to Eu 2+ . The electric resistivity reveals a non-monotonic temperature dependence with non-metallic behavior below ∼60 K, consistent with the band structure calculations. By fitting the data using the thermally activated resistivity formula, we estimate the energy gap to be ∼0.14 eV. Below T N , the resistivity tends to saturate, suggesting the reduction of charge-spin scattering. 
    more » « less