skip to main content


Search for: All records

Creators/Authors contains: "Jin, Song"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 23, 2024
  2. Abstract

    Reversible phenotypic flexibility allows organisms to better match phenotypes to prevailing environmental conditions and may produce fitness benefits. Costs and constraints of phenotypic flexibility may limit the capacity for flexible responses but are not well understood nor documented. Costs could include expenses associated with maintaining the flexible system or with generating the flexible response. One potential cost of maintaining a flexible system is an energetic cost reflected in the basal metabolic rate (BMR), with elevated BMR in individuals with more flexible metabolic responses. We accessed data from thermal acclimation studies of birds where BMR and/or Msum(maximum cold-induced metabolic rate) were measured before and after acclimation, as a measure of metabolic flexibility, to test the hypothesis that flexibility in BMR (ΔBMR), Msum(ΔMsum), or metabolic scope (Msum − BMR; ΔScope) is positively correlated with BMR. When temperature treatments lasted at least three weeks, three of six species showed significant positive correlations between ΔBMR and BMR, one species showed a significant negative correlation, and two species showed no significant correlation. ΔMsumand BMR were not significantly correlated for any species and ΔScope and BMR were significantly positively correlated for only one species. These data suggest that support costs exist for maintaining high BMR flexibility for some bird species, but high flexibility in Msumor metabolic scope does not generally incur elevated maintenance costs.

     
    more » « less
  3. Abstract

    Animal‐sourced hydrogels, such as collagen, are widely used as extracellular‐matrix (ECM) mimics in tissue engineering but are plagued with problems of reproducibility, immunogenicity, and contamination. Synthetic, chemically defined hydrogels can avoid such issues. Despite the abundance of collagen in the ECM, synthetic collagen hydrogels are extremely rare due to design challenges brought on by the triple‐helical structure of collagen. Sticky‐ended symmetric self‐assembly (SESSA) overcomes these challenges by maximizing interactions between the strands of the triple helix, allowing the assembly of collagen‐mimetic peptides (CMPs) into robust synthetic collagen nanofibers. This optimization, however, also minimizes interfiber contacts. In this work, symmetric association states for the SESSA of short CMPs to probe their increased propensity for interfiber association are modelled. It is found that 33‐residue CMPs not only self‐assemble through sticky ends, but also form hydrogels. These self‐assemblies behave with remarkable consistency across multiple scales and present a clear link between their triple‐helical architecture and the properties of their hydrogels. The results show that SESSA is an effective and robust design methodology that enables the rational design of synthetic collagen hydrogels.

     
    more » « less
  4. null (Ed.)
    Abstract Developing efficient and stable earth-abundant electrocatalysts for acidic oxygen evolution reaction is the bottleneck for water splitting using proton exchange membrane electrolyzers. Here, we show that nanocrystalline CeO 2 in a Co 3 O 4 /CeO 2 nanocomposite can modify the redox properties of Co 3 O 4 and enhances its intrinsic oxygen evolution reaction activity, and combine electrochemical and structural characterizations including kinetic isotope effect, pH- and temperature-dependence, in situ Raman and ex situ X-ray absorption spectroscopy analyses to understand the origin. The local bonding environment of Co 3 O 4 can be modified after the introduction of nanocrystalline CeO 2 , which allows the Co III species to be easily oxidized into catalytically active Co IV species, bypassing the potential-determining surface reconstruction process. Co 3 O 4 /CeO 2 displays a comparable stability to Co 3 O 4 thus breaks the activity/stability tradeoff. This work not only establishes an efficient earth-abundant catalysts for acidic oxygen evolution reaction, but also provides strategies for designing more active catalysts for other reactions. 
    more » « less