skip to main content


Search for: All records

Creators/Authors contains: "Johnson, Benjamin D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    By combining the James Webb Space Telescope (JWST)/NIRCam JADES and CEERS extragalactic data sets, we have uncovered a sample of 21 T and Y brown dwarf candidates at best-fit distances between 0.1 and 4.2 kpc. These sources were selected by targeting the blue 1–2.5μm colors and red 3–4.5μm colors that arise from molecular absorption in the atmospheres ofTeff< 1300 K brown dwarfs. We fit these sources using multiple models of substellar atmospheres and present the resulting fluxes, sizes, effective temperatures, and other derived properties for the sample. If confirmed, these fits place the majority of the sources in the Milky Way thick disk and halo. We observe proper motions for seven of the candidate brown dwarfs, with directions in agreement with the plane of our Galaxy, providing evidence that they are not extragalactic in nature. We demonstrate how the colors of these sources differ from selected high-redshift galaxies, and explore the selection of these sources in planned large-area JWST NIRCam surveys. Deep imaging with JWST/NIRCam presents an an excellent opportunity for finding and understanding these ultracool dwarfs at kiloparsec distances.

     
    more » « less
  2. ABSTRACT

    The power-law slope of the rest-ultraviolet (UV) continuum (fλ ∝ λβ) is a key metric of early star-forming galaxies, providing one of our only windows into the stellar populations and physical conditions of z ≳ 10 galaxies. Expanding upon previous studies with limited sample sizes, we leverage deep imaging from the JWST Advanced Deep Extragalactic Survey (JADES) to investigate the UV slopes of 179 z ≳ 9 galaxies with apparent magnitudes of mF200W ≃ 26–31, which display a median UV slope of β = −2.4. We compare to a statistical sample of z ≃ 5–9 galaxies, finding a shift towards bluer rest-UV colours at all $M_{\rm UV}$. The most UV-luminous z ≳ 9 galaxies are significantly bluer than their lower redshift counterparts, representing a dearth of moderately red galaxies within the first 500 Myr. At yet earlier times, the z ≳ 11 galaxy population exhibits very blue UV slopes, implying very low impact from dust attenuation. We identify a robust sample of 44 galaxies with β ≲ −2.8, which have spectral energy distributions requiring models of density-bounded H ii regions and median ionizing photon escape fractions of 0.51 to reproduce. Their rest-optical colours imply that this sample has weaker emission lines (median mF356W − mF444W = 0.19 mag) than typical galaxies (median mF356W − mF444W = 0.39 mag), consistent with the inferred escape fractions. This sample consists of relatively low stellar masses (median $\log (M/{\rm M}_{\odot })=7.5\pm 0.2$), and specific star formation rates (sSFRs; median $=79 \, \rm Gyr^{-1}$) nearly twice that of our full galaxy sample (median sSFRs $=44 \, \rm Gyr^{-1}$), suggesting these objects are more common among systems experiencing a recent upturn in star formation. We demonstrate that the shutoff of star formation provides an alternative solution for modelling of extremely blue UV colours, making distinct predictions for the rest-optical emission of these galaxies. Future spectroscopy will be required to distinguish between these physical pictures.

     
    more » « less
  3. ABSTRACT

    We model the stellar abundances and ages of two disrupted dwarf galaxies in the Milky Way stellar halo: Gaia-Sausage Enceladus (GSE) and Wukong/LMS-1. Using a statistically robust likelihood function, we fit one-zone models of galactic chemical evolution with exponential infall histories to both systems, deriving e-folding time-scales of τin = 1.01 ± 0.13 Gyr for GSE and $\tau _\text{in} = 3.08^{+3.19}_{-1.16}$ Gyr for Wukong/LMS-1. GSE formed stars for $\tau _\text{tot} = 5.40^{+0.32}_{-0.31}$ Gyr, sustaining star formation for ∼1.5–2 Gyr after its first infall into the Milky Way ∼10 Gyr ago. Our fit suggests that star formation lasted for $\tau _\text{tot} = 3.36^{+0.55}_{-0.47}$ Gyr in Wukong/LMS-1, though our sample does not contain any age measurements. The differences in evolutionary parameters between the two are qualitatively consistent with trends with stellar mass M⋆ predicted by simulations and semi-analytic models of galaxy formation. Our inferred values of the outflow mass-loading factor reasonably match $\eta \propto M_\star ^{-1/3}$ as predicted by galactic wind models. Our fitting method is based only on Poisson sampling from an evolutionary track and requires no binning of the data. We demonstrate its accuracy by testing against mock data, showing that it accurately recovers the input model across a broad range of sample sizes (20 ≤ N ≤ 2000) and measurement uncertainties (0.01 ≤ σ[α/Fe], σ[Fe/H] ≤ 0.5; $0.02 \le \sigma _{\log _{10}(\text{age})} \le 1$). Due to the generic nature of our derivation, this likelihood function should be applicable to one-zone models of any parametrization and easily extensible to other astrophysical models which predict tracks in some observed space.

     
    more » « less
  4. Abstract

    The Magellanic Stream (MS)—an enormous ribbon of gas spanning 140° of the southern sky trailing the Magellanic Clouds—has been exquisitely mapped in the five decades since its discovery. However, despite concerted efforts, no stellar counterpart to the MS has been conclusively identified. This stellar stream would reveal the distance and 6D kinematics of the MS, constraining its formation and the past orbital history of the Clouds. We have been conducting a spectroscopic survey of the most distant and luminous red giant stars in the Galactic outskirts. From this data set, we have discovered a prominent population of 13 stars matching the extreme angular momentum of the Clouds, spanning up to 100° along the MS at distances of 60–120 kpc. Furthermore, these kinematically selected stars lie along an [α/Fe]-deficient track in chemical space from −2.5 < [Fe/H] <− 0.5, consistent with their formation in the Clouds themselves. We identify these stars as high-confidence members of the Magellanic Stellar Stream. Half of these stars are metal-rich and closely follow the gaseous MS, whereas the other half are more scattered and metal-poor. We argue that the metal-rich stream is the recently formed tidal counterpart to the MS, and we speculate that the metal-poor population was thrown out of the SMC outskirts during an earlier interaction between the Clouds. The Magellanic Stellar Stream provides a strong set of constraints—distances, 6D kinematics, and birth locations—that will guide future simulations toward unveiling the detailed history of the Clouds.

     
    more » « less
  5. Abstract

    The majority of the Milky Way’s stellar halo consists of debris from our galaxy’s last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from the GSE have been kinematically and chemically studied in the inner 30 kpc of our galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to 100 kpc. We obtain follow-up spectra of stars in two strong overdensities—including the previously identified outer Virgo Overdensity—and find them to be relatively metal rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming 60–90 kpc counterparts to the 15–20 kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from 50 to 100 kpc, in the same plane as the Sagittarius Stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our galaxy’s stellar halo.

     
    more » « less
  6. Abstract Modern Galactic surveys have revealed an ancient merger that dominates the stellar halo of our galaxy (Gaia–Sausage–Enceladus, GSE). Using chemical abundances and kinematics from the H3 Survey, we identify 5559 halo stars from this merger in the radial range r Gal = 6–60kpc. We forward model the full selection function of H3 to infer the density profile of this accreted component of the stellar halo. We consider a general ellipsoid with principal axes allowed to rotate with respect to the galactocentric axes, coupled with a multiply broken power law. The best-fit model is a triaxial ellipsoid (axes ratios 10:8:7) tilted 25° above the Galactic plane toward the Sun and a doubly broken power law with breaking radii at 12 kpc and 28 kpc. The doubly broken power law resolves a long-standing dichotomy in literature values of the halo breaking radius, being at either ∼15 kpc or ∼30 kpc assuming a singly broken power law. N -body simulations suggest that the breaking radii are connected to apocenter pile-ups of stellar orbits, and so the observed double-break provides new insight into the initial conditions and evolution of the GSE merger. Furthermore, the tilt and triaxiality of the stellar halo could imply that a fraction of the underlying dark matter halo is also tilted and triaxial. This has important implications for dynamical mass modeling of the galaxy as well as direct dark matter detection experiments. 
    more » « less
  7. Abstract One of the most common methods for inferring galaxy attenuation curves is via spectral energy distribution (SED) modeling, where the dust attenuation properties are modeled simultaneously with other galaxy physical properties. In this paper, we assess the ability of SED modeling to infer these dust attenuation curves from broadband photometry, and suggest a new flexible model that greatly improves the accuracy of attenuation curve derivations. To do this, we fit mock SEDs generated from the simba cosmological simulation with the prospector SED fitting code. We consider the impact of the commonly assumed uniform screen model and introduce a new nonuniform screen model parameterized by the fraction of unobscured stellar light. This nonuniform screen model allows for a nonzero fraction of stellar light to remain unattenuated, resulting in a more flexible attenuation curve shape by decoupling the shape of the UV attenuation curve from the optical attenuation curve. The ability to constrain the dust attenuation curve is significantly improved with the use of a nonuniform screen model, with the median offset in UV attenuation decreasing from −0.30 dex with a uniform screen model to −0.17 dex with the nonuniform screen model. With this increase in dust attenuation modeling accuracy, we also improve the star formation rates (SFRs) inferred with the nonuniform screen model, decreasing the SFR offset on average by 0.12 dex. We discuss the efficacy of this new model, focusing on caveats with modeling star-dust geometries and the constraining power of available SED observations. 
    more » « less
  8. Abstract

    We present a catalog of 717 candidate galaxies atz> 8 selected from 125 square arcmin of NIRCam imaging as part of the JWST Advanced Deep Extragalactic Survey (JADES). We combine the full JADES imaging data set with data from the JWST Extragalactic Medium Survey and First Reionization Epoch Spectroscopic COmplete Survey (FRESCO) along with extremely deep existing observations from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) for a final filter set that includes 15 JWST/NIRCam filters and five HST/ACS filters. The high-redshift galaxy candidates were selected from their estimated photometric redshifts calculated using a template-fitting approach, followed by visual inspection from seven independent reviewers. We explore these candidates in detail, highlighting interesting resolved or extended sources, sources with very red long-wavelength slopes, and our highest-redshift candidates, which extend tozphot∼ 18. Over 93% of the sources are newly identified from our deep JADES imaging, including 31 new galaxy candidates atzphot> 12. We also investigate potential contamination by stellar objects, and do not find strong evidence from spectral energy distribution fitting that these faint high-redshift galaxy candidates are low-mass stars. Using 42 sources in our sample with measured spectroscopic redshifts from NIRSpec and FRESCO, we find excellent agreement to our photometric redshift estimates, with no catastrophic outliers and an average difference of 〈Δz=zphotzspec〉 = 0.26. These sources comprise one of the most robust samples for probing the early buildup of galaxies within the first few hundred million years of the Universe’s history.

     
    more » « less
  9. Abstract Accurate models of the star formation histories (SFHs) of recently quenched galaxies can provide constraints on when and how galaxies shut down their star formation. The recent development of nonparametric SFH models promises the flexibility required to make these measurements. However, model and prior choices significantly affect derived SFHs, particularly for post-starburst galaxies (PSBs), which have sharp changes in their recent SFH. In this paper, we create mock PSBs, then use the Prospector SED fitting software to test how well four different SFH models recover key properties. We find that a two-component parametric model performs well for our simple mock galaxies, but is sensitive to model mismatches. The fixed- and flexible-bin nonparametric models included in Prospector are able to rapidly quench a major burst of star formation, but systematically underestimate the post-burst age by up to 200 Myr. We develop a custom SFH model that allows for additional flexibility in the recent SFH. Our flexible nonparametric model is able to constrain post-burst ages with no significant offset and just ∼90 Myr of scatter. Our results suggest that while standard nonparametric models are able to recover first-order quantities of the SFH (mass, SFR, average age), accurately recovering higher-order quantities (burst fraction, quenching time) requires careful consideration of model flexibility. These mock recovery tests are a critical part of future SFH studies. Finally, we show that our new, public SFH model is able to accurately recover the properties of mock star-forming and quiescent galaxies and is suitable for broader use in the SED fitting community. https://github.com/bd-j/prospector 
    more » « less
  10. Abstract

    We explore how the presence of detectable molecular gas depends on the inferred star formation histories (SFHs) in eight massive, quiescent galaxies atz∼ 0.7. Half of the sample have clear detections of molecular gas, traced by CO(2–1). We find that the molecular gas content is unrelated to the rate of star formation decline prior to the most recent 1 Gyr, suggesting that the gas reservoirs are not left over from their primary star formation epoch. However, the recent SFHs of CO-detected galaxies demonstrate evidence for secondary bursts of star formation in their last Gyr. The fraction of stellar mass formed in these secondary bursts ranges fromfburst≈ 0.3%–6% and ended betweentend-burst≈ 0–330 Myr ago. The CO-detected galaxies form a higher fraction of mass in the last Gyr (fM1Gyr=2.6%±1.8%) compared to the CO-undetected galaxies (fM1Gyr=0.2%±0.1%). The galaxies with gas reservoirs have enhanced late-time star formation, highlighting this as a contributing factor to the observed heterogeneity in the gas reservoirs in high-redshift quiescent galaxies. We find that the amount of gas and star formation driven by these secondary bursts are inconsistent with that expected from dry minor mergers, and instead are likely driven by recently accreted gas, i.e., gas-rich minor mergers. This conclusion would not have been made based on SFRUV+IRmeasurements alone, highlighting the power of detailed SFH modeling in the interpretation of gas reservoirs. Larger samples are needed to understand the frequency of low-level rejuvenation among quiescent galaxies at intermediate redshifts, and to what extent this drives the diversity of molecular gas reservoirs.

     
    more » « less