skip to main content


Search for: All records

Creators/Authors contains: "Jones, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate-driven permafrost thaw can release ancient carbon to the atmosphere, begetting further warming in a positive feedback loop. Polar ice core data and young radiocarbon ages of dissolved methane in thermokarst lakes have challenged the importance of this feedback, but field studies did not adequately account for older methane released from permafrost through bubbling. We synthesized panarctic isotope and emissions datasets to derive integrated ages of panarctic lake methane fluxes. Methane age in modern thermokarst lakes (3132 ± 731 years before present) reflects remobilization of ancient carbon. Thermokarst-lake methane emissions fit within the constraints imposed by polar ice core data. Younger, albeit ultimately larger sources of methane from glacial lakes, estimated here, lagged those from thermokarst lakes. Our results imply that panarctic lake methane release was a small positive feedback to climate warming, comprising up to 17% of total northern hemisphere sources during the deglacial period.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. The accelerated warming conditions of the high Arctic have intensified the extensive thawing of permafrost. Retrogressive thaw slumps (RTSs) are considered as the most active landforms in the Arctic permafrost. An increase in RTSs has been observed in the Arctic in recent decades. Continuous monitoring of RTSs is important to understand climate change-driven disturbances in the region. Manual detection of these landforms is extremely difficult as they occur over exceptionally large areas. Only very few studies have explored the utility of very high spatial resolution (VHSR) commercial satellite imagery in the automated mapping of RTSs. We have developed deep learning (DL) convolution neural net (CNN) based workflow to automatically detect RTSs from VHRS satellite imagery. This study systematically compared the performance of different DLCNN model architectures and varying backbones. Our candidate CNN models include: DeepLabV3+, UNet, UNet++, Multi-scale Attention Net (MA-Net), and Pyramid Attention Network (PAN) with ResNet50, ResNet101 and ResNet152 backbones. The RTS modeling experiment was conducted on Banks Island and Ellesmere Island in Canada. The UNet++ model demonstrated the highest accuracy (F1 score of 87%) with the ResNet50 backbone at the expense of training and inferencing time. PAN, DeepLabV3, MaNet, and UNet, models reported mediocre F1 scores of 72%, 75%, 80%, and 81% respectively. Our findings unravel the performances of different DLCNNs in imagery-enabled RTS mapping and provide useful insights on operationalizing the mapping application across the Arctic.

     
    more » « less
  3. Free, publicly-accessible full text available March 30, 2024
  4. null (Ed.)
    We present our work on constructing a template Baryonic Tully-Fisher Relation (BTFR) from galaxies in the local universe that have primary distances. We utilize HI 21 cm line data from the complete Arecibo Legacy Fast ALFA (ALFALFA) survey and the digital HI archive from Springob et al. 2005; we also use photometry from the Sloan Digital Sky Survey (SDSS) and the NASA Sloan Atlas (NSA) MANGA v1_0_2 database; lastly, we have also made use of the Extragalactic Distance Database (EDD) for identifying galaxies with primary distances. After cross-matching the galaxies in these catalogues, we identify some 144 galaxies which meet our requirements for having all the necessary HI and photometry data, having primary distances, residing within 30 Mpc, and having low enough uncertainties to be considered reliable data points. An important trait of this data set is the prominence of low-mass, low-luminosity dwarves. Notably, we find the values for the slope, intercept and intrinsic scatter of the relation to be around 2.3, 4.8, and 0.4, respectively. Further, while unresolved velocity widths have historically produced shallower slopes, and while the BTFR has been shown to have a higher intrinsic scatter for low-mass galaxies, these precedents are not enough to explain the deviation of our data from the “standard” values of the BTFR. This work therefore raises several questions about why this discrepancy exists, how it can be resolved, and what we can learn from it. The authors would like to acknowledge the support of NSF/AST-1714828 and the Brinson Foundation. 
    more » « less
  5. Free, publicly-accessible full text available September 1, 2024
  6. ABSTRACT

    The C-Band All-Sky Survey (C-BASS) has observed the Galaxy at 4.76 GHz with an angular resolution of 0${_{.}^{\circ}}$73 full-width half-maximum, and detected Galactic synchrotron emission with high signal-to-noise ratio over the entire northern sky (δ > −15○). We present the results of a spatial correlation analysis of Galactic foregrounds at mid-to-high (b > 10○) Galactic latitudes using a preliminary version of the C-BASS intensity map. We jointly fit for synchrotron, dust, and free–free components between 20 and 1000 GHz and look for differences in the Galactic synchrotron spectrum, and the emissivity of anomalous microwave emission (AME) when using either the C-BASS map or the 408-MHz all-sky map to trace synchrotron emission. We find marginal evidence for a steepening (<Δβ> = −0.06 ± 0.02) of the Galactic synchrotron spectrum at high frequencies resulting in a mean spectral index of <β> = −3.10 ± 0.02 over 4.76–22.8 GHz. Further, we find that the synchrotron emission can be well modelled by a single power law up to a few tens of GHz. Due to this, we find that the AME emissivity is not sensitive to changing the synchrotron tracer from the 408-MHz map to the 4.76-GHz map. We interpret this as strong evidence for the origin of AME being spinning dust emission.

     
    more » « less
  7. Free, publicly-accessible full text available August 1, 2024
  8. null (Ed.)
    The sources of atmospheric methane (CH4) during the Holocene remain widely debated, including the role of high latitude wetland and peatland expansion and fen-to-bog transitions. We reconstructed CH4 emissions from northern peatlands from 13,000 before present (BP) to present using an empirical model based on observations of peat initiation (>3600 14C dates), peatland type (>250 peat cores), and contemporary CH4 emissions in order to explore the effects of changes in wetland type and peatland expansion on CH4 emissions over the end of the late glacial and the Holocene. We find that fen area increased steadily before 8000 BP as fens formed in major wetland complexes. After 8000 BP, new fen formation continued but widespread peatland succession (to bogs) and permafrost aggradation occurred. Reconstructed CH4 emissions from peatlands increased rapidly between 10,600 BP and 6900 BP due to fen formation and expansion. Emissions stabilized after 5000 BP at 42 ± 25 Tg CH4 y-1 as high-emitting fens transitioned to lower-emitting bogs and permafrost peatlands. Widespread permafrost formation in northern peatlands after 1000 BP led to drier and colder soils which decreased CH4 emissions by 20% to 34 ± 21 Tg y-1 by the present day. 
    more » « less