skip to main content


Search for: All records

Creators/Authors contains: "Jorstad, S. G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the results of our study of cross-correlations between long-term multiband observations of the radio variability of the blazar 3C 279. More than a decade (2008–2022) of radio data were collected at seven different frequencies ranging from 2 to 230 GHz. The multiband radio light curves show variations in flux, with the prominent flare features appearing first at higher-frequency and later in lower-frequency bands. This behaviour is quantified by cross-correlation analysis, which finds that the emission at lower-frequency bands lags that at higher-frequency bands. Lag versus frequency plots are well fit by straight lines with negative slope, typically ∼−30 day GHz−1. We discuss these flux variations in conjunction with the evolution of bright moving knots seen in multiepoch Very Long Baseline Array maps to suggest possible physical changes in the jet that can explain the observational results. Some of the variations are consistent with the predictions of shock models, while others are better explained by a changing Doppler beaming factor as the knot trajectory bends slightly, given a small viewing angle to the jet.

     
    more » « less
  2. Context. In February 2017 the blazar OJ 287, one of the best super-massive binary-black-hole-system candidates, was detected for the first time at very high energies (VHEs; E  > 100 GeV) with the ground-based γ -ray observatory VERITAS. Aims. Very high energy γ rays are thought to be produced in the near vicinity of the central engine in active galactic nuclei. For this reason, and with the main goal of providing useful information for the characterization of the physical mechanisms connected with the observed teraelectronvolt flaring event, we investigate the parsec-scale source properties by means of high-resolution very long baseline interferometry observations. Methods. We use 86 GHz Global Millimeter-VLBI Array (GMVA) observations from 2015 to 2017 and combine them with additional multiwavelength radio observations at different frequencies from other monitoring programs. We investigate the source structure by modeling the brightness distribution with two-dimensional Gaussian components in the visibility plane. Results. In the GMVA epoch following the source VHE activity, we find a new jet feature (labeled K) at ∼0.2 mas from the core region and located in between two quasi-stationary components (labeled S1 and S2). Multiple periods of enhanced activity are detected at different radio frequencies before and during the VHE flaring state. Conclusions. Based on the findings of this work, we identify as a possible trigger for the VHE flaring emission during the early months of 2017 the passage of a new jet feature through a recollimation shock (represented by the model-fit component S1) in a region of the jet located at a de-projected distance of ∼10 pc from the radio core. 
    more » « less
  3. We report on a comprehensive analysis of simultaneous X-ray polarimetric and spectral data of the bright atoll source GX 9+9 with the Imaging X-ray Polarimetry Explorer (IXPE) and NuSTAR . The source is significantly polarized in the 4–8 keV band, with a degree of 2.2%  ±  0.5% (uncertainty at the 68% confidence level). The NuSTAR broad-band spectrum clearly shows an iron line, and is well described by a model including thermal disc emission, a Comptonized component, and reflection. From a spectro-polarimetric fit, we obtain an upper limit to the polarization degree of the disc of 4% (at the 99% confidence level), while the contribution of Comptonized and reflected radiation cannot be conclusively separated. However, the polarization is consistent with resulting from a combination of Comptonization in a boundary or spreading layer, plus reflection off the disc, which significantly contributes in any realistic scenario. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. ABSTRACT X Persei is a persistent low-luminosity X-ray pulsar of period of ≈ 835 s in a Be binary system. The field strength at the neutron star surface is not known precisely, but indirect signs indicate a magnetic field above 1013 G, which makes the object one of the most magnetized known X-ray pulsars. Here we present the results of observations X Persei performed with the Imaging X-ray Polarimetry Explorer (IXPE). The X-ray polarization signal was found to be strongly dependent on the spin phase of the pulsar. The energy-averaged polarization degree in 3–8 keV band varied from several to ∼20 per cent over the pulse with a phase dependence resembling the pulse profile. The polarization angle shows significant variation and makes two complete revolutions during the pulse period, resulting in nearly nil pulse-phase averaged polarization. Applying the rotating vector model to the IXPE data we obtain the estimates for the rotation axis inclination and its position angle on the sky, as well as for the magnetic obliquity. The derived inclination is close to the orbital inclination, reported earlier for X Persei. The polarimetric data imply a large angle between the rotation and magnetic dipole axes, which is similar to the result reported recently for the X-ray pulsar GRO J1008−57. After eliminating the effect of polarization angle rotation over the pulsar phase using the best-fitting rotating vector model, the strong dependence of the polarization degree with energy was discovered, with its value increasing from 0 at ∼2 keV to 30per cent at 8 keV. 
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  5. ABSTRACT We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Ψ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (>38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼4 to ∼8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry. 
    more » « less
    Free, publicly-accessible full text available June 8, 2024
  6. ABSTRACT

    PG 1553 + 113 is one of the few blazars with a convincing quasi-periodic emission in the gamma-ray band. The source is also a very high energy (VHE; >100 GeV) gamma-ray emitter. To better understand its properties and identify the underlying physical processes driving its variability, the MAGIC Collaboration initiated a multiyear, multiwavelength monitoring campaign in 2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The analysis presented in this paper uses data until 2017 and focuses on the characterization of the variability. The gamma-ray data show a (hint of a) periodic signal compatible with literature, but the X-ray and VHE gamma-ray data do not show statistical evidence for a periodic signal. In other bands, the data are compatible with the gamma-ray period, but with a relatively high p-value. The complex connection between the low- and high-energy emission and the non-monochromatic modulation and changes in flux suggests that a simple one-zone model is unable to explain all the variability. Instead, a model including a periodic component along with multiple emission zones is required.

     
    more » « less
  7. ABSTRACT We report spectro-polarimetric results of an observational campaign of the bright neutron star low-mass X-ray binary Cyg X-2 simultaneously observed by IXPE, NICER, and INTEGRAL. Consistently with previous results, the broad-band spectrum is characterized by a lower-energy component, attributed to the accretion disc with kTin ≈ 1 keV, plus unsaturated Comptonization in thermal plasma with temperature kTe = 3 keV and optical depth τ ≈ 4, assuming a slab geometry. We measure the polarization degree in the 2–8 keV band P = 1.8 ± 0.3 per cent and polarization angle ϕ = 140° ± 4°, consistent with the previous X-ray polarimetric measurements by OSO-8 as well as with the direction of the radio jet which was earlier observed from the source. While polarization of the disc spectral component is poorly constrained with the IXPE data, the Comptonized emission has a polarization degree P = 4.0 ± 0.7 per cent and a polarization angle aligned with the radio jet. Our results strongly favour a spreading layer at the neutron star surface as the main source of the polarization signal. However, we cannot exclude a significant contribution from reflection off the accretion disc, as indicated by the presence of the iron fluorescence line. 
    more » « less
  8. ABSTRACT We report on the Imaging X-ray Polarimetry Explorer (IXPE) observation of the closest and X-ray brightest Compton-thick active galactic nucleus (AGN), the Circinus galaxy. We find the source to be significantly polarized in the 2–6 keV band. From previous studies, the X-ray spectrum is known to be dominated by reflection components, both neutral (torus) and ionized (ionization cones). Our analysis indicates that the polarization degree is 28 ± 7 per cent (at 68 per cent confidence level) for the neutral reflector, with a polarization angle of 18° ± 5°, roughly perpendicular to the radio jet. The polarization of the ionized reflection is unconstrained. A comparison with Monte Carlo simulations of the polarization expected from the torus shows that the neutral reflector is consistent with being an equatorial torus with a half-opening angle of 45°–55°. This is the first X-ray polarization detection in a Seyfert galaxy, demonstrating the power of X-ray polarimetry in probing the geometry of the circumnuclear regions of AGNs, and confirming the basic predictions of standard Unification Models. 
    more » « less
  9. ABSTRACT

    In 2021 BL Lacertae underwent an extraordinary activity phase, which was intensively followed by the Whole Earth Blazar Telescope (WEBT) Collaboration. We present the WEBT optical data in the BVRI bands acquired at 36 observatories around the world. In mid-2021 the source showed its historical maximum, with R = 11.14. The light curves display many episodes of intraday variability, whose amplitude increases with source brightness, in agreement with a geometrical interpretation of the long-term flux behaviour. This is also supported by the long-term spectral variability, with an almost achromatic trend with brightness. In contrast, short-term variations are found to be strongly chromatic and are ascribed to energetic processes in the jet. We also analyse the optical polarimetric behaviour, finding evidence of a strong correlation between the intrinsic fast variations in flux density and those in polarization degree, with a time delay of about 13 h. This suggests a common physical origin. The overall behaviour of the source can be interpreted as the result of two mechanisms: variability on time-scales greater than several days is likely produced by orientation effects, while either shock waves propagating in the jet, or magnetic reconnection, possibly induced by kink instabilities in the jet, can explain variability on shorter time-scales. The latter scenario could also account for the appearance of quasi-periodic oscillations, with periods from a few days to a few hours, during outbursts, when the jet is more closely aligned with our line of sight and the time-scales are shortened by relativistic effects.

     
    more » « less