skip to main content


Search for: All records

Creators/Authors contains: "Jourdan, Nathalie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cao, Yi (Ed.)
    PEMF (Pulsed Electromagnetic Field) stimulation has been used for therapeutic purposes for over 50 years including in the treatment of memory loss, depression, alleviation of pain, bone and wound healing, and treatment of certain cancers. However, the underlying cellular mechanisms mediating these effects have remained poorly understood. In particular, because magnetic field pulses will induce electric currents in the stimulated tissue, it is unclear whether the observed effects are due to the magnetic or electric component of the stimulation. Recently, it has been shown that PEMFs stimulate the formation of ROS (reactive oxygen species) in human cell cultures by a mechanism that requires cryptochrome, a putative magnetosensor. Here we show by qPCR analysis of ROS-regulated gene expression that simply removing cell cultures from the Earth’s geomagnetic field by placing them in a Low-Level Field condition induces similar effects on ROS signaling as does exposure of cells to PEMF. This effect can be explained by the so-called Radical Pair mechanism, which provides a quantum physical means by which the rates and product yields (e.g. ROS) of biochemical redox reactions may be modulated by magnetic fields. Since transient cancelling of the Earth’s magnetic field can in principle be achieved by PEMF exposure, we propose that the therapeutic effects of PEMFs may be explained by the ensuing modulation of ROS synthesis. Our results could lead to significant improvements in the design and therapeutic applications of PEMF devices. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Cryptochromes are blue light‐absorbing photoreceptors found in plants and animals with many important signalling functions. These include control of plant growth, development, and the entrainment of the circadian clock. Plant cryptochromes have recently been implicated in adaptations to temperature variation, including temperature compensation of the circadian clock. However, the effect of temperature directly on the photochemical properties of the cryptochrome photoreceptor remains unknown. Here we show that the response to light of purifiedArabidopsisCry1 and Cry2 proteins was significantly altered by temperature. Spectral analysis at 15°C showed a pronounced decrease in flavin reoxidation rates from the biologically active, light‐induced (FADH°) signalling state of cryptochrome to the inactive (FADox) resting redox state as compared to ambient (25°C) temperature. This result indicates that at low temperatures, the concentration of the biologically active FADH° redox form of Cry is increased,leading to the counterintuitive prediction that there should be an increased biological activity of Cry at lower temperatures. This was confirmed using Cry1 cryptochrome C‐terminal phosphorylation as a direct biological assay for Cry activationin vivo. We conclude that enhanced cryptochrome functionin vivoat low temperature is consistent with modulation by temperature of the cryptochrome photocycle.

     
    more » « less