skip to main content


Search for: All records

Creators/Authors contains: "Juno, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We analyse the generation of kinetic instabilities and their effect on the energization of ions in non-relativistic, oblique collisionless shocks using a 3D-3V (three spatial with three velocity components) simulation by dHybridR , a hybrid particle-in-cell code. At sufficiently high Mach number, quasi-perpendicular and oblique shocks can experience rippling of the shock surface caused by kinetic instabilities arising from free energy in the ion velocity distribution due to the combination of the incoming ion beam and the population of ions reflected at the shock front. To understand the role of the ripple on particle energization, we devise a new instability isolation method to identify the unstable modes underlying the ripple and interpret the results in terms of the governing kinetic instability. We generate velocity-space signatures using the field–particle correlation technique to look at energy transfer in phase space from the isolated instability driving the shock ripple, providing a viewpoint on the different dynamics of distinct populations of ions in phase space. Together, the field–particle correlation technique and our new instability isolation method provide a unique viewpoint on the different dynamics of distinct populations of ions in phase space and allow us to completely characterize the energetics of the collisionless shock under investigation. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. We present the first-of-its-kind coupling of a continuum full- f gyrokinetic turbulence model with a 6D continuum model for kinetic neutrals, carried out using the Gkeyll code. Our objective is to improve the first-principle understanding of the role of neutrals in plasma fueling, detachment, and their interaction with edge plasma profiles and turbulence statistics. Our model includes only atomic hydrogen and incorporates electron-impact ionization, charge exchange, and wall recycling. These features have been successfully verified with analytical predictions and benchmarked with the DEGAS2 Monte Carlo neutral code. We carry out simulations for a scrape-off layer (SOL) with simplified geometry and National Spherical Torus Experiment parameters. We compare these results to a baseline simulation without neutrals and find that neutral interactions reduce the normalized density fluctuation levels and associated skewness and kurtosis, while increasing auto-correlation times. A flatter density profile is also observed, similar to the SOL density shoulder formation in experimental scenarios with high fueling. 
    more » « less
  3. Alfvén wave collisions are the primary building blocks of the non-relativistic turbulence that permeates the heliosphere and low- to moderate-energy astrophysical systems. However, many astrophysical systems such as gamma-ray bursts, pulsar and magnetar magnetospheres and active galactic nuclei have relativistic flows or energy densities. To better understand these high-energy systems, we derive reduced relativistic magnetohydrodynamics equations and employ them to examine weak Alfvénic turbulence, dominated by three-wave interactions, in reduced relativistic magnetohydrodynamics, including the force-free, infinitely magnetized limit. We compare both numerical and analytical solutions to demonstrate that many of the findings from non-relativistic weak turbulence are retained in relativistic systems. But, an important distinction in the relativistic limit is the inapplicability of a formally incompressible limit, i.e. there exists finite coupling to the compressible fast mode regardless of the strength of the magnetic field. Since fast modes can propagate across field lines, this mechanism provides a route for energy to escape strongly magnetized systems, e.g. magnetar magnetospheres. However, we find that the fast-Alfvén coupling is diminished in the limit of oblique propagation. 
    more » « less
  4. Alfvén waves as excited in black hole accretion disks and neutron star magnetospheres are the building blocks of turbulence in relativistic, magnetized plasmas. A large reservoir of magnetic energy is available in these systems, such that the plasma can be heated significantly even in the weak turbulence regime. We perform high-resolution three-dimensional simulations of counter-propagating Alfvén waves, showing that an $E_{B_{\perp }}(k_{\perp }) \propto k_{\perp }^{-2}$ energy spectrum develops as a result of the weak turbulence cascade in relativistic magnetohydrodynamics and its infinitely magnetized (force-free) limit. The plasma turbulence ubiquitously generates current sheets, which act as locations where magnetic energy dissipates. We show that current sheets form as a natural result of nonlinear interactions between counter-propagating Alfvén waves. These current sheets form owing to the compression of elongated eddies, driven by the shear induced by growing higher-order modes, and undergo a thinning process until they break-up into small-scale turbulent structures. We explore the formation of current sheets both in overlapping waves and in localized wave packet collisions. The relativistic interaction of localized Alfvén waves induces both Alfvén waves and fast waves, and efficiently mediates the conversion and dissipation of electromagnetic energy in astrophysical systems. Plasma energization through reconnection in current sheets emerging during the interaction of Alfvén waves can potentially explain X-ray emission in black hole accretion coronae and neutron star magnetospheres. 
    more » « less
  5. null (Ed.)
    ABSTRACT The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully kinetic particle-in-cell vpic, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell (HVM) code. We differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function. There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations, with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence, although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures, but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is finally discussed. 
    more » « less
  6. null (Ed.)
    Monte Carlo methods are often employed to numerically integrate kinetic equations, such as the particle-in-cell method for the plasma kinetic equation, but these methods suffer from the introduction of counting noise to the solution. We report on a cautionary tale of counting noise modifying the nonlinear saturation of kinetic instabilities driven by unstable beams of plasma. We find a saturated magnetic field in under-resolved particle-in-cell simulations due to the sampling error in the current density. The noise-induced magnetic field is anomalous, as the magnetic field damps away in continuum kinetic and increased particle count particle-in-cell simulations. This modification of the saturated state has implications for a broad array of astrophysical phenomena beyond the simple plasma system considered here, and it stresses the care that must be taken when using particle methods for kinetic equations. 
    more » « less
  7. Abstract

    The Magnetospheric Multiscale (MMS) mission has given us unprecedented access to high cadence particle and field data of magnetic reconnection at Earth's magnetopause. MMS first passed very near an X‐line on 16 October 2015, the Burch event, and has since observed multiple X‐line crossings. Subsequent 3‐D particle‐in‐cell (PIC) modeling efforts of and comparison with the Burch event have revealed a host of novel physical insights concerning magnetic reconnection, turbulence‐induced particle mixing, and secondary instabilities. In this study, we employ theGkeyll simulation framework to study the Burch event with different classes of extended, multifluid magnetohydrodynamics (MHD), including models that incorporate important kinetic effects, such as the electron pressure tensor, with physics‐based closure relations designed to capture linear Landau damping. Such fluid modeling approaches are able to capture different levels of kinetic physics in global simulations and are generally less costly than fully kinetic PIC. We focus on the additional physics one can capture with increasing levels of fluid closure refinement via comparison with MMS data and existing PIC simulations. In particular, we find that the ten‐moment model well captures the agyrotropic structure of the pressure tensor in the vicinity of the X‐line and the magnitude of anisotropic electron heating observed in MMS and PIC simulations. However, the ten‐moment model is found to have difficulty resolving the lower hybrid drift instability, which plays a fundamental role in heating and mixing electrons in the current layer.

     
    more » « less