skip to main content


Search for: All records

Creators/Authors contains: "Kameno, Seiji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report sub-parsec-scale observations of the 321 GHz H2O emission line in the radio galaxy NGC 1052. The H2O line emitter size is constrained in <0.6 mas distributed on the continuum core component. The brightness temperature exceeding 106 K and the intensity variation indicate certain evidence for maser emission. The maser spectrum consists of redshifted and blueshifted velocity components spanning ∼400 km s−1, separated by a local minimum around the systemic velocity of the galaxy. The spatial distribution of maser components shows a velocity gradient along the jet direction, implying that the population-inverted gas is driven by the jets interacting with the molecular torus. We identified a significant change of the maser spectra between two sessions separated by 14 days. The maser profile showed a radial velocity drift of 127 ± 13 km s−1 yr−1 implying inward gravitational acceleration at 5000 Schwarzschild radii. The results demonstrate the feasibility of future very long baseline interferometry observations to resolve the jet–torus interacting region.

     
    more » « less
  2. Abstract

    The Atacama Large Millimeter/submillimeter Array (ALMA) serendipitously detected H2O $J_{K_{\rm a}, K_{\rm c}} = 10_{2,9}$–93, 6 emission at 321 GHz in NGC 1052. This is the first submillimeter maser detection in a radio galaxy and the most luminous 321 GHz H2O maser known to-date with the isotropic luminosity of $1090\, L_{\odot }$. The line profile consists of a broad velocity component with FWHM = 208 ± 12 km s−1 straddling the systemic velocity and a narrow component with FWHM = 44 ± 3 km s−1 blueshifted by 160 km s−1. The profile is significantly different from the known 22 GHz 61, 6–52, 3 maser which shows a broad profile redshifted by 193 km s−1. The submillimeter maser is spatially unresolved with a synthesized beam of ${0{^{\prime \prime}_{.}}68} \times {0{^{\prime \prime}_{.}}56}$ and coincides with the continuum core position within 12 pc. These results indicate amplification of the continuum emission through high-temperature (>1000 K) and dense [n(H2O) > 104 cm−3] molecular gas in front of the core.

     
    more » « less
  3. Abstract

    We characterize the accuracy of linear-polarization mosaics made using the Atacama Large Millimeter/submillimeter Array (ALMA). First, we observed the bright, highly linearly polarized blazar 3C 279 at Bands 3, 5, 6, and 7 (3 mm, 1.6 mm, 1.3 mm, and 0.87 mm, respectively). At each band, we measured the blazar’s polarization on an 11 × 11 grid of evenly spaced offset pointings covering the full-width at half-maximum (FWHM) area of the primary beam. After applying calibration solutions derived from the on-axis pointing of 3C 279 to all of the on- and off-axis data, we find that the residual polarization errors across the primary beam are similar at all frequencies: the residual errors in linear polarization fractionPfracand polarization position angleχare ≲0.001 (≲0.1% of StokesI) and ≲ 1° near the center of the primary beam; the errors increase to ∼0.003–0.005 (∼0.3%–0.5% of StokesI) and ∼1°–5° near the FWHM as a result of the asymmetric beam patterns in the (linearly polarized)QandUmaps. We see the expected double-lobed “beam squint” pattern in the circular polarization (StokesV) maps. Second, to test the polarization accuracy in a typical ALMA project, we performed observations of continuum linear polarization toward the Kleinmann–Low nebula in Orion (Orion-KL) using several mosaic patterns at Bands 3 and 6. We show that after mosaicking, the residual off-axis errors decrease as a result of overlapping multiple pointings. Finally, we compare the ALMA mosaics with an archival 1.3 mm Combined Array for Research in Millimeter-wave Astronomy polarization mosaic of Orion-KL and find good consistency in the polarization patterns.

     
    more » « less
  4. Abstract Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus that the synchrotron emission is responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae (BL Lac) performed with the Imaging X-ray Polarimetry Explorer, from which an upper limit to the polarization degree Π X < 12.6% was found in the 2–8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton-synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac. 
    more » « less