skip to main content


Search for: All records

Creators/Authors contains: "Kaminsky, Werner"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. null (Ed.)
    Redox-active multimetallic platforms with synthetically addressable and hemilabile active sites are attractive synthetic targets for mimicking the reactivity of enzymatic co-factors toward multielectron transformations. To this end, a family of ternary clusters featuring three edge metal sites anchored on a [Co 6 Se 8 ] multimetallic support via amidophosphine ligands are a promising platform. In this report, we explore how small changes in the stereoelectronic properties of these ligands alter [Co 6 Se 8 ] metalloligand formation, but also substrate binding affinity and strength of the edge/support interaction in two new ternary clusters, M 3 Co 6 Se 8 L 6 (M = Zn, Fe; L (−) = Ph 2 PN (−)i Pr). These clusters are characterized extensively using a range of methods, including single crystal X-ray diffraction, electronic absorption spectroscopy and cyclic voltammetry. Substrate binding studies reveal that Fe 3 Co 6 Se 8 L 6 resists coordination of larger ligands like pyridine or tetrahydrofuran, but binds the smaller ligand CN t Bu. Additionally, investigations into the synthesis of new [Co 6 Se 8 ] metalloligands using two aminophosphines, Ph 2 PN(H) i Pr (L H ) and i Pr 2 PN(H) i Pr, led to the synthesis and characterization of Co 6 Se 8 L H 6 , as well as the smaller clusters Co 4 Se 2 (CO) 6 L H 4 , Co 3 Se(μ 2 -PPh 2 )(CO) 4 L H 3 , and [Co(CO) 3 ( i Pr 2 PN(H) i Pr)] 2 . Cumulatively, this study expands our understanding on the effect of the stereoelectronic properties of aminophosphine ligands in the synthesis of cobalt chalcogenide clusters, and, importantly on modulating the push–pull dynamic between the [Co 6 Se 8 ] support, the edge metals and incoming coordinating ligands in ternary M 3 Co 6 Se 8 L 6 clusters. 
    more » « less
  4. null (Ed.)
    The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry. 
    more » « less
  5. null (Ed.)
    Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co 3 (py) 3 Co 6 Se 8 L 6 (py = pyridine, L = Ph 2 PN(Tol)), and ditopic linkers. Post-synthetically, the 3D crystals can be mechanically exfoliated into ultrathin flakes (8 to 60 nm), or intercalated with the redox-active guest tetracyanoethylene in a single-crystal-to-single-crystal transformation. Extensive characterization, including by single crystal X-ray diffraction, reveals how intrinsic features of the nanocluster, such as its structure, chirality, redox-activity and magnetic profile, predetermine key properties of the emerging 2D structures. Within the nanosheets, the strict and unusual stereoselectivity of the nanocluster's Co edges for the low symmetry (α,α,β) isomer gives rise to in-plane structural anisotropy, while the helically chiral nanoclusters self-organize into alternating Δ- and Λ-homochiral rows. The nanocluster's high-spin Co edges, and its rich redox profile make the nanosheets both magnetically and electrochemically active, as revealed by solid state magnetic and cyclic voltammetry studies. The length and flexibility of the ditopic linker was varied, and found to have a secondary effect on the structure and stacking of the nanosheets within the 3D crystals. With these results we introduce a deterministic and versatile synthetic entry to programmable functionality and symmetry in 2D superatomic crystals. 
    more » « less
  6. A green and scalable method to synthesize organic luminophores with minimal aggregation caused quenching (ACQ) is reported where direct arylation is used to attach alkylated theobromine moieties onto luminophores. The resulting compounds demonstrated high photoluminescence quantum yields (PLQYs) in solution and as aggregates. The minimized ACQ can be ascribed to the large dihedral angles that theobromine moieties introduce into these molecules, preventing π–π interactions between the luminophores. Furthermore, the large dihedral angles promote the formation of hybridized local and charge-transfer states in these molecules. Finally, amplified spontaneous emission measurements were performed to explore their potential in lasers. 
    more » « less