skip to main content


Search for: All records

Creators/Authors contains: "Kaspar, Tiffany C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    Radioactive waste immobilization is a means to limit the release of radionuclides from various waste streams into the environment over a timescale of hundreds to many thousands of years. Incorporation of radionuclide-containing wastes into borosilicate glass during vitrification is one potential route to accomplish such immobilization. To facilitate comparisons and assessments of reproducibility across experiments and laboratories, a six-component borosilicate glass (Si, B, Na, Al, Ca, Zr) known as the International Simple Glass (ISG) was developed by international consensus as a compromise between simplicity and similarity to waste glasses. Focusing on a single glass composition with a multi-pronged approach utilizing state-of-the-art, multi-scale experimental and theoretical tools provides a common database that can be used to assess relative importance of mechanisms and models. Here we present physical property data (both published and previously unpublished) on a single batch of ISG, which was cast into individual ingots that were distributed to the collaborators. Properties from the atomic scale to the macroscale, including composition and elemental impurities, phase purity, density, thermal properties, mechanical properties, optical and vibrational properties, and the results of molecular dynamics simulations are presented. In addition, information on the surface composition and morphology after polishing is included. Although the existing literature on the alteration of ISG is not extensively reviewed here, the results of well-controlled static alteration experiments are presented here as a point of reference for other performance investigations.

     
    more » « less
  5. Abstract

    The behavior of polar LaMnO3(LMO) thin films deposited epitaxially on nonpolar SrTiO3(001) (STO) is dictated by both the LMO/STO band alignment and the chemistry of the Mn cation. Using in situ X‐ray photoelectron spectroscopy, the valence band offset (VBO) of LMO/STO heterojunctions is directly measured as a function of thickness, and found that the VBO is 2.5 eV for thicker (≥3 u.c.) films. No evidence of a built‐in electric field in LMO films of any thickness is found. Measurements of the Mn valence by MnL‐edge X‐ray absorption spectroscopy and by spatially resolved electron energy loss spectra in scanning transmission electron microscopy images reveal that Mn2+is present at the LMO surface, but not at the LMO/STO interface. These results are corroborated by density functional theory simulations that confirm a VBO of ≈2.5 eV for both ideal and intermixed interfaces. A model is proposed for the behavior of polar/nonpolar LMO/STO heterojunctions in which the polar catastrophe is alleviated by the formation of oxygen vacancies at the LMO surface.

     
    more » « less