skip to main content


Search for: All records

Creators/Authors contains: "Keller, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2025
  2. null (Ed.)
    Diamond and coesite are classic indicators of ultrahigh-pressure (UHP; ≥100-kilometer depth) metamorphism, but they readily recrystallize during exhumation. Crystallographically oriented pyroxene and amphibole exsolution lamellae in garnet document decomposed supersilicic UHP majoritic garnet originally stable at diamond-grade conditions, but majoritic precursors have only been quantitatively demonstrated in mafic and ultramafic rocks. Moreover, controversy persists regarding which silicates majoritic garnet breakdown produces. We present a method for reconstructing precursor majoritic garnet chemistry in metasedimentary Appalachian gneisses containing garnets preserving concentric zones of crystallographically oriented lamellae including quartz, amphibole, and sodium phlogopite. We link this to novel quartz-garnet crystallographic orientation data. The results reveal majoritic precursors stable at ≥175-kilometer depth and that quartz and mica may exsolve from garnet. Large UHP terranes in the European Caledonides formed during collision of the paleocontinents Baltica and Laurentia; we demonstrate UHP metamorphism from the microcontinent-continent convergence characterizing the contiguous and coeval Appalachian orogen. 
    more » « less
  3. The double-spin-polarization observable E for γ p → pπ0 has been measured with the CEBAF Large Acceptance Spectrometer (CLAS) at photon beam energies Eγ from 0.367 to 2.173 GeV (corresponding to center-ofmass energies from 1.240 to 2.200 GeV) for pion center-ofmass angles, cos θc.m. π0 , between − 0.86 and 0.82. These new CLAS measurements cover a broader energy range and have smaller uncertainties compared to previous CBELSA data and provide an important independent check on systematics. These measurements are compared to predictions as well as new global fits from The George Washington University, Mainz, and Bonn-Gatchina groups. Their inclusion in multipole analyses will allow us to refine our understanding of the single-pion production contribution to the Gerasimov-Drell- Hearn sum rule and improve the determination of resonance properties, which will be presented in a future publication. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available May 1, 2024