skip to main content


Search for: All records

Creators/Authors contains: "Khusid, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A variety of colloidal structures observed in terrestrial experiments could also have been influenced by gravity effects (particle sedimentation, convection, etc.) It is often assumed that weightlessness simulated in a time-averaged sense by slowly rotating a specimen in a clinostat about an axis perpendicular to the gravity direction that is widely used in biological tests would reduce the effect of gravity on suspensions. Experiments on a non-buoyancy-matched suspension in flights in NASA Zero-gravity aircraft revealed that particle patterns formed in a clinostat and under normal gravity are actually similar. A requirement for matching densities between particles and a solvent severely limits possibilities to study the field-induced structuring in colloids in terrestrial experiments. Long-term microgravity in ISS offers unique opportunity to employ not density matched suspensions to explore a wide range of the mismatch of electric characteristics between particles and a solvent. We will report experimental data on the field driven structure formation in suspensions and present our approach to the development of ISS experiments. The aim is to understand mechanisms of structure formation and suggest novel routes for creating functional materials. *NASA NNX13AQ53G, NSF1832260. 
    more » « less
  2. Model hard colloids have a great deal of relevance to physics and in particular the study of their phase behavior which can mimic that of simple atomic liquids and solids. "Nearly hard colloidal sphere" suspensions were formulated 35 years ago by the Ottewill group (Univ. of Bristol) and Imperial Chemical Industries Ltd., which were used by Pusey and van Megen in their seminal study of the phase behavior of hard-sphere colloids. We report on our efforts to reproduce and refine this benchmark polymer colloid, including the recent synthesis of hard ellipsoids for random and ordered packing studies in microgravity*. The custom-made samples are composed of linear polymer chains of poly(methyl methacrylate), functionalized with photo-crosslinkable moieties and fluorescent molecules. The resulting ellipsoidal shapes are about 1 micron in size and stabilized with surface-grafted poly(12-hydroxystearic acid) chains. The particles are dispersed in a refractive index matching fluid and particle aspect ratios vary from 1 to 4. * Launched March 2020 aboard SpaceX CRS-20 resupply service mission to the International Space Station. *NASA NNX13AR67G (NYU); NSF GOALI 1832291 (NYU); NSF GOALI 1832260 (NJIT) 
    more » « less
  3. The influence of the pore topology and polymer properties on mechanical characteristics of asymmetric polyethersulfone (PES) and symmetric polyvinylidene fluoride (PVDF) microfiltration membranes was investigated by conducting elongation, creep, stress relaxation, small-amplitude oscillatory and bubble point pressure tests. The main aspects of the membrane stress-strain curves were found to be similar despite significant differences in the pore topology and polymer properties. While the Kelvin-Voigt model for solid polymers described the membrane viscoelastic response below the transition to ductile yielding, the stress-strain curves of membranes and solid polymers above the yield point appeared to be drastically different. All tested membranes demonstrated weak strain hardening, low sensitivity to strain rate, significant elastic recovery, stress relaxation and reduction of the bubble point pressure with accumulation of plastic deformation. Therefore, tensile stresses exerted on a membrane under assembling and process conditions should be smaller than the yield stress to assure that they will not impair filter performance. The novelty of our approach is the use of models for perforated plates to evaluate membrane mechanical properties as ductile yielding for both proceeds via localized plastic deformation around pores. Presented results provide a reliable framework for development of membranes with properties tailored to applications. 
    more » « less