skip to main content


Search for: All records

Creators/Authors contains: "Kim, Kee-Tae"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We have mapped HCN and HCO+ (J = 1 → 0) line emission toward a sample of seven star-forming regions (with 12+log[O/H] ranging from 8.34 to 8.69) in the outer Milky Way (Galactocentric distance >9.5 kpc), using the 14 m radio telescope of the Taeduk Radio Astronomy Observatory. We compare these two molecular lines with other conventional tracers of dense gas, millimeter-wave continuum emission from dust and extinction thresholds (A V ≥ 8 mag), inferred from the 13CO line data. HCN and HCO+ correlate better with the millimeter emission than with the extinction criterion. A significant amount of luminosity comes from regions below the extinction criterion and outside the millimeter clump for all the clouds. The average fraction of HCN luminosity from within the regions with A V ≥ 8 mag is 0.343 ± 0.225; for the regions of millimeter emission, it is 0.478 ± 0.149. Based on a comparison with column density maps from Herschel, HCN and HCO+ trace dense gas in high column density regions better than does 13CO. HCO+ is less concentrated than HCN for outer Galaxy targets, in contrast with the inner Galaxy sample, suggesting that metallicity may affect the interpretation of tracers of dense gas. The conversion factor between the dense gas mass (M dense) and line luminosities of HCN and HCO+, when integrated over the whole cloud, is comparable to factors used in extragalactic studies. 
    more » « less
  2. We report results of a project to map HCN and HCO+ J=1→0 emission toward a sample of molecular clouds in the inner Galaxy, all containing dense clumps that are actively engaged in star formation. We compare these two molecular line tracers with millimeter continuum emission and extinction, as inferred from 13CO, as tracers of dense gas in molecular clouds. The fraction of the line luminosity from each tracer that comes from the dense gas, as measured by AV>8 mag, varies substantially from cloud to cloud. In all cases, a substantial fraction (in most cases, the majority) of the total luminosity arises in gas below the AV>8 mag threshold and outside the region of strong millimeter continuum emission. Measurements of L(HCN) toward other galaxies will likely be dominated by such gas at lower surface densities. Substantial, even dominant, contributions to the total line luminosity can arise in gas with densities typical of the cloud as a whole (n ∼ 100 cm-3). Defining the dense clump from the HCN or HCO+ emission itself, similarly to previous studies, leads to a wide range of clump properties, with some being considerably larger and less dense than in previous studies. HCN and HCO+ have a similar ability to trace dense gas for the clouds in this sample. For the two clouds with low virial parameters, 13CO is definitely a worse tracer of the dense gas, but for the other four, it is equally good (or bad) at tracing dense gas. 
    more » « less
  3. ABSTRACT

    We investigate the presence of hub-filament systems in a large sample of 146 active proto-clusters, using H13CO+ J = 1-0 molecular line data obtained from the ATOMS survey. We find that filaments are ubiquitous in proto-clusters, and hub-filament systems are very common from dense core scales (∼0.1 pc) to clump/cloud scales (∼1–10 pc). The proportion of proto-clusters containing hub-filament systems decreases with increasing dust temperature (Td) and luminosity-to-mass ratios (L/M) of clumps, indicating that stellar feedback from H ii regions gradually destroys the hub-filament systems as proto-clusters evolve. Clear velocity gradients are seen along the longest filaments with a mean velocity gradient of 8.71 km s−1 pc−1 and a median velocity gradient of 5.54 km s−1 pc−1. We find that velocity gradients are small for filament lengths larger than ∼1 pc, probably hinting at the existence of inertial inflows, although we cannot determine whether the latter are driven by large-scale turbulence or large-scale gravitational contraction. In contrast, velocity gradients below ∼1 pc dramatically increase as filament lengths decrease, indicating that the gravity of the hubs or cores starts to dominate gas infall at small scales. We suggest that self-similar hub-filament systems and filamentary accretion at all scales may play a key role in high-mass star formation.

     
    more » « less
  4. ABSTRACT We present ALMA Band 7 polarization observations of the OMC-1 region of the Orion molecular cloud. We find that the polarization pattern observed in the region is likely to have been significantly altered by the radiation field of the >104 L⊙ high-mass protostar Orion Source I. In the protostar’s optically thick disc, polarization is likely to arise from dust self-scattering. In material to the south of Source I – previously identified as a region of ‘anomalous’ polarization emission – we observe a polarization geometry concentric around Source I. We demonstrate that Source I’s extreme luminosity may be sufficient to make the radiative precession time-scale shorter than the Larmor time-scale for moderately large grains ($\gt 0.005\!-\!0.1\, \mu$m), causing them to precess around the radiation anisotropy vector (k-RATs) rather than the magnetic field direction (B-RATs). This requires relatively unobscured emission from Source I, supporting the hypothesis that emission in this region arises from the cavity wall of the Source I outflow. This is one of the first times that evidence for k-RAT alignment has been found outside of a protostellar disc or AGB star envelope. Alternatively, the grains may remain aligned by B-RATs and trace gas infall on to the Main Ridge. Elsewhere, we largely find the magnetic field geometry to be radial around the BN/KL explosion centre, consistent with previous observations. However, in the Main Ridge, the magnetic field geometry appears to remain consistent with the larger-scale magnetic field, perhaps indicative of the ability of the dense Ridge to resist disruption by the BN/KL explosion. 
    more » « less
  5. Abstract

    In 2019 September, a sudden flare of the 6.7 GHz methanol maser was observed toward the high-mass young stellar object (HMYSO) G24.33+0.14. This may represent the fourth detection of a transient mass accretion event in an HMYSO after S255IR NIRS3, NGC 6334I-MM1, and G358.93−0.03-MM1. G24.33+0.14 is unique among these sources as it clearly shows a repeating flare with an 8 yr interval. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we observed the millimeter continuum and molecular lines toward G24.33+0.14 in the pre-flare phase in 2016 August (ALMA Cycle 3) and the mid-flare phase in 2019 September (ALMA Cycle 6). We identified three continuum sources in G24.33+0.14, and the brightest source, C1, which is closely associated with the 6.7 GHz maser emission, shows only a marginal increase in flux density with a flux ratio (Cycle 6$/$Cycle 3) of 1.16 ± 0.01, considering an additional absolute flux calibration uncertainty of $10\%$. We identified 26 transitions from 13 molecular species other than methanol, and they exhibit similar levels of flux differences with an average flux ratio of 1.12 ± 0.15. In contrast, eight methanol lines observed in Cycle 6 are brighter than those in Cycle 3 with an average flux ratio of 1.23 ± 0.13, and the higher excitation lines tend to show a larger flux increase. If this systematic increasing trend is real, it would suggest radiative heating close to the central HMYSO due to an accretion event which could expand the size of the emission region and/or change the excitation conditions. Given the low brightness temperatures and small flux changes, most of the methanol emission is likely to be predominantly thermal, except for the 229.759 GHz (8−1–70 E) line known as a class I methanol maser. The flux change in the millimeter continuum of G24.33+0.14 is smaller than in S255IR NIRS3 and NGC 6334I-MM1 but is comparable with that in G358.93−0.03-MM1, suggesting different amounts of accreted mass in these events.

     
    more » « less
  6. The East Asian VLBI Network (EAVN) is an international VLBI facility in East Asia and is operated under mutual collaboration between East Asian countries, as well as part of Southeast Asian and European countries. EAVN currently consists of 16 radio telescopes and three correlators located in China, Japan, and Korea, and is operated mainly at three frequency bands, 6.7, 22, and 43 GHz with the longest baseline length of 5078 km, resulting in the highest angular resolution of 0.28 milliarcseconds at 43 GHz. One of distinct capabilities of EAVN is multi-frequency simultaneous data reception at nine telescopes, which enable us to employ the frequency phase transfer technique to obtain better sensitivity at higher observing frequencies. EAVN started its open-use program in the second half of 2018, providing a total observing time of more than 1100 h in a year. EAVN fills geographical gap in global VLBI array, resulting in enabling us to conduct contiguous high-resolution VLBI observations. EAVN has produced various scientific accomplishments especially in observations toward active galactic nuclei, evolved stars, and star-forming regions. These activities motivate us to initiate launch of the ’Global VLBI Alliance’ to provide an opportunity of VLBI observation with the longest baselines on the earth. 
    more » « less