skip to main content


Search for: All records

Creators/Authors contains: "Kim, Keun-Young"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer’s disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.

     
    more » « less
  2. Abstract

    Cristae are high‐curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae‐shaping proteins have been defined, analogous lipid‐based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi‐scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein‐mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low‐oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Summary

    Coastal salt marshes are key sites of biogeochemical cycling and ideal systems in which to investigate the community structure of complex microbial communities. Here, we clarify structural–functional relationships among microorganisms and their mineralogical environment, revealing previously undescribed metabolic activity patterns and precise spatial arrangements within salt marsh sediment. Following 3.7‐dayin situincubations with a non‐canonical amino acid that was incorporated into new biomass, samples were resin‐embedded and analysed by correlative fluorescence and electron microscopy to map the microscale arrangements of anabolically active and inactive organisms alongside mineral grains. Parallel sediment samples were examined by fluorescence‐activated cell sorting and 16S rRNA gene sequencing to link anabolic activity to taxonomic identity. Both approaches demonstrated a rapid decline in the proportion of anabolically active cells with depth into salt marsh sediment, from ~60% in the top centimetre to 9.4%–22.4% between 2 and 10 cm. From the top to the bottom, the most prominent active community members shifted from sulfur cycling phototrophic consortia, to putative sulfate‐reducing bacteria likely oxidizing organic compounds, to fermentative lineages. Correlative microscopy revealed more abundant (and more anabolically active) organisms around non‐quartz minerals including rutile, orthoclase and plagioclase. Microbe–mineral relationships appear to be dynamic and context‐dependent arbiters of biogeochemical cycling.

     
    more » « less