skip to main content


Search for: All records

Creators/Authors contains: "Kim, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Low temperature synthesis of high quality two-dimensional (2D) materials directly on flexible substrates remains a fundamental limitation towards scalable realization of robust flexible electronics possessing the unique physical properties of atomically thin structures. Herein, we describe room temperature sputtering of uniform, stoichiometric amorphous MoS 2 and subsequent large area (>6.25 cm 2 ) photonic crystallization of 5 nm 2H-MoS 2 films in air to enable direct, scalable fabrication of ultrathin 2D photodetectors on stretchable polydimethylsiloxane (PDMS) substrates. The lateral photodetector devices demonstrate an average responsivity of 2.52 μW A −1 and a minimum response time of 120 ms under 515.6 nm illumination. Additionally, the surface wrinkled, or buckled, PDMS substrate with conformal MoS 2 retained the photoconductive behavior at tensile strains as high as 5.72% and over 1000 stretching cycles. The results indicate that the photonic crystallization method provides a significant advancement in incorporating high quality semiconducting 2D materials applied directly on polymer substrates for wearable and flexible electronic systems. 
    more » « less
  4. Abstract

    The competing and non‐equilibrium phase transitions, involving dynamic tunability of cooperative electronic and magnetic states in strongly correlated materials, show great promise in quantum sensing and information technology. To date, the stabilization of transient states is still in the preliminary stage, particularly with respect to molecular electronic solids. Here, a dynamic and cooperative phase in potassium‐7,7,8,8‐tetracyanoquinodimethane (K‐TCNQ) with the control of pulsed electromagnetic excitation is demonstrated. Simultaneous dynamic and coherent lattice perturbation with 8 ns pulsed laser (532 nm, 15 MW cm−2, 10 Hz) in such a molecular electronic crystal initiates a stable long‐lived (over 400 days) conducting paramagnetic state (≈42 Ωcm), showing the charge–spin bistability over a broad temperature range from 2 to 360 K. Comprehensive noise spectroscopy, in situ high‐pressure measurements, electron spin resonance (ESR), theoretical model, and scanning tunneling microscopy/spectroscopy (STM/STS) studies provide further evidence that such a transition is cooperative, requiring a dedicated charge–spin–lattice decoupling to activate and subsequently stabilize nonequilibrium phase. The cooperativity triggered by ultrahigh‐strain‐rate (above 106s1) pulsed excitation offers a collective control toward the generation and stabilization of strongly correlated electronic and magnetic orders in molecular electronic solids and offers unique electro‐magnetic phases with technological promises.

     
    more » « less